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 CHAPTER 1. GENERAL INTRODUCTION 

 

LITERATURE REVIEW 

 

Enzyme-assisted aqueous extraction processing of soybeans 

 Soybean is known as the most widely produced oilseed around the world. In 2010, 

soybeans represented 58% of world oilseed production, with 35% of the soybeans was 

produced in United States (Soy Stats, 2011). In United States, 68% of the edible consumption 

of fats and oil is from soybeans (Soy Stats, 2011). The processing of soybeans commonly 

uses hexane as the organic solvent to extract oil from soybean seeds. However, the use of 

hexane has drawn negative attention as it poses environmental and safety hazard. Therefore, 

alternatives to solvent extraction have been sought.  

Aqueous extraction processing (AEP) is an environmental friendly technology in 

which the oil extraction is based on the insolubility of oil in water rather than on the 

dissolution of oil in organic solvent (Johnson and Lucas, 1983). AEP extracts oil and protein 

simultaneously and appears to be a good alternative to solvent extraction. However, the low 

yield of oil, difficulties in demulsifying the emulsions, and the lack of resulting aqueous 

effluent (skim) usage challenged the use of AEP (Rosenthal et al., 1996).  

Enzyme treatment was later shown as a great way to increase the oil yield in AEP of 

soybeans. Rosenthal et al. (1996) reported that carbohydrases (pectinase, cellulase, and 

hemicellulase) are specific in hydrolyzing cell wall and allow more oil to release into the 

aqueous medium. On the other hand, Lamsal et al. (2006) suggested flaking and extruding as 

forms of mechanical pre-treatment of oil-bearing materials could help to distort the cell wall 
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in order to achieve higher oil recovery from AEP and enzyme-assisted aqueous extraction 

processing (EAEP) of soybeans. Protease was further studied on the effect of demulsifying 

the cream fraction and was found to help in recovering more oil (de Moura et al., 2008). 

EAEP of extruded soybean flakes resulted in three distinct fractions: insolubles fraction that 

rich in fiber, liquid fraction (skim) that rich in protein, and the fraction with cream and free 

oil (de Moura et al., 2008). 

In order to reduce the amount of water used in EAEP at the same time improving oil, 

protein, and solids extraction yields, two-stage countercurrent EAEP was developed (de 

Moura and Johnson, 2009). In brief, the insoluble fraction from the first AEP extraction was 

subjected to the first EAEP extraction and the skim from the first EAEP extraction was 

recycled to the second EAEP extraction to enable the reuse of enzyme. The laboratory scale 

of two-stage countercurrent EAEP was later moved to the pilot-plant scale to examine the 

feasibility of large scale soybeans EAEP using the similar equipment that industry would use 

(de Moura et al., 2011). Fig.1 shows the process flow diagram for the pilot-plant scale of 

integrated two-stage countercurrent EAEP of soybeans.  
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Fig.1. Process flow diagram for integrated two-stage countercurrent EAEP of soybeans. 

(adapted from de Moura et al., 2011) 

 

According to de Moura et al. (2011), for every liter of oil extracted from soybeans, 

28.7 L of soy skim and 4.4 kg of insolubles were produced. Thus, the economic feasibility of 

the EAEP of soybeans depends on maximizing the values of all the three fractions. Since the 

cream fraction could be enzymatic demulsified to free oil, the other two fractions, protein-
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rich skim and fiber-rich insolubles, need to be explored in order to facilitate the industrial 

adoption of soybean EAEP.   

Pictures and proximate composition of the insoluble fiber and skim fractions (Yao et 

al., 2012) from EAEP are presented in Fig. 2 and Table 1. The insoluble fraction is rich in 

fiber and it was shown to be a good substrate for solid-state fermentation (SSF) by 

lignocellulose-degrading fungi to break down its fiber fraction (Yang et al., 2012). In 

addition, the protein-rich skim fraction was successfully used as an excellent nutrient source 

for corn ethanol fermentation by Yao et al. (2011). These two co-products can be used as 

suitable substrates by different fermentation systems and their values can be further 

maximized through more studies.  

 

 

Fig. 2. Insoluble fiber (left) and skim (right) fractions from EAEP of soybeans. 

 

Table 1. Proximate composition of two co-products from EAEP of soybeans. 
    Composition (%, dwb) 

  Solid content (%) Oil Protein Ash Carbohydrate 

Insoluble fiber 15.0 3.3 6.4 4.3 86.0 
Skim 11.0 9.0 56.0 13.0 22.0 



www.manaraa.com

5 

 

 

 

 

  

Solid-state fermentation 

Solid-state fermentation (SSF) refers to the fermentation process in which 

microorganisms are grown on solid substrates without the presence of free liquid (Lonsane et 

al., 1985). It has been gaining attention in industry due to the low waste water production and 

operating expenses, simpler fermentation media requirement, superior productivity, and 

easier prevention of bacterial contamination (Deschamps et al., 1985; Chahal, 1991; Hema et 

al., 2006) compared to the submerged fermentation (SmF), in which the nutrients and 

microorganisms are present in a large amount of water. Another attractive advantage of SSF 

is the utilization of lignocellulosic residues as substrates to relieve the wastes disposal 

problem, as well as to enhance their values for other applications. 

 As SSF occurs when microorganisms grow on solid materials without the presence 

of free water, it can only be carried out by limited number of microorganisms. Among all, 

fungi are shown to be well adapted to SSF as their hyphae can grow on substrate surfaces and 

penetrate into the inter-particle spaces, thereby colonizing solid substrates (Santos et al., 

2004). Lignocellulose-degrading fungi such as Aspergillus spp., Trichoderma spp., and 

white-rot fungi are commonly used to decompose the lignocelluloses in SSF (Pandey et al., 

1999; Tengerdy and Szakacs, 2003) by producing enzymes such as cellulases, 

hemicellulases, and ligninases.  

Optimization of SSF conditions is critical in supporting the growth of 

microorganisms and maximizing the production yield. Key parameters for optimization of 

SSF include the carbon and nitrogen sources, compatibility of strains and substrates, initial 

pH of the growth medium, incubation temperature and period, aeration, mixing, moisture 
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content, and water activity in the substrate (Pandey, 2003; Bhargav et al., 2008). Each of the 

parameters plays an important role in developing a complete system for SSF.  

Although SSF has shown a great potential in producing valuable products, some 

difficulties including the lack of homogeneity in substrate, difficulty in scale-up, and 

requirement for controlling process variables are yet to be solved (Bhargav et al., 2008). SSF 

can have a crucial role in future biotechnologies if these drawbacks are given enough 

attention to overcome. 

 

Mixed culture SSF 

Co-culture with two fungi has been reported to enhance enzyme production in SSF, 

especially when lignocellulosic residues are used as the substrates. The complexity of these 

substrates often requires the action of multiple enzymes and the interaction among different 

microbes to accomplish the biodegradation (Muhannad et al., 2001). Trichoderma reesei, for 

instance, is known as an efficient cellulose producer that secretes high amount of 

endoglucanases and cellobiohydrolases. Nevertheless, its low amount of secretion of β-

glucosidase (Ryu and Mandels, 1980) may be supplemented by β-glucosidase from another 

microbial source such as Aspergillus spp (Grajek, 1987) to facilitate the bioconversion of 

lignocelluloses. 

By using sugarcane baggase as substrate for SSF, higher cellulase activity was shown 

in mixed culture of T. reesei and Aspergillus spp, including A. niger, A. terreus, and A. 

phoenicis in different studies (Gutierrez-Correa et al., 1999; Muhannad et al., 2001; 

Gutierrez-Correa et al., 1997). Brijwani et al. (2010) also found that total cellulase, β-

glucosidase, and endocellulase increased considerably when T. reesei and A. oryzae were 
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employed in a static tray bioreactor under SSF by using a soybean hull substrate 

supplemented with wheat bran. Enzyme productions of both cellulase and xylanase were 

enhanced considerably when T. reesei and A. niger were co-cultured in SSF of water 

hyacinth (Deshpande et al., 2008).   

In addition, mixed culture of T. reesei and P. chrysosporium was also shown to 

facilitate the degradation of lignocellulosic residues through secretion of different enzymes. 

Kumar and Shweta (2011) reported the combination of  T. reesei and P. chrysosporium to be 

the best in lignocellulosic decomposition of timber waste compared to other fungi mixtures. 

Such combination was also used in other studies in composting different solid wastes 

(Haddadin et al., 2009; Raut et al., 2008). 

 

Substrates for SSF and SmF used in this research 

1. Soybean cotyledon fiber 

Soybean is a dicot plant, with seeds consisting primarily cotyledon cells and 

surrounded by a seed coat and pericarp layer (Campbell et al., 2011). Since most of the 

soybean protein and oil are stored in the cotyledon cells, the fiber-rich insoluble fraction after 

AEP or EAEP of soybeans is referred as soybean cotyledon fiber. Karki et al. (2011) 

demonstrated the potential use of soybean cotyledon fiber as lignocellulosic feedstock for 

ethanol production because of the high carbohydrate content. By enzyme hydrolysis, soybean 

cotyledon fiber could produce fermentable sugars that can be used in bio-ethanol production 

or as specialty food and feed ingredients. Pretreatments of soybean cotyledon fiber with 

ammonium hydroxide, sodium hydroxide, and sulfuric acid were also studied and shown to 

enhance the glucose production after enzyme hydrolysis (Karki et al., 2011). Although the 
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soybean cotyledon fiber recovered from EAEP was suggested to be used as animal feed (de 

Moura et al., 2009), the high fiber content limits its use as non-ruminant feed. Non-ruminants 

lack the ability to breakdown the fiber due to the absence of a special stomach as in 

ruminants. Yang et al. (2012) showed potential of using soybean cotyledon fiber as a 

substrate for SSF for improved digestibility. SSF of soybean cotyledon fiber by using 

different fungi promoted the enzyme production, resulted in decreased neutral detergent fiber 

(NDF) and acid detergent fiber (ADF). SSF thus showed a great potential for improving the 

digestibility of soybean cotyledon fiber as non-ruminant feed and may enhance the value of 

this fiber-rich fraction recovered from EAEP of soybeans. 

2. Soy skim 

Soy skim is a liquid fraction from soybean EAEP and contains approximate 11% of 

dry matter, of which 56% (dwb) is partially hydrolyzed protein and 9% (dwb) is oil (Yao et 

al., 2012).  Soy skim was shown to increase the ethanol production rate when it was used as 

water replacement in dry-grind corn fermentation (Yao et al., 2011). The final distiller’s 

dried grains with soluble (DDGS) product from such fermentation also resulted in higher 

protein content, which may justify its use as animal feed. The promoting effect of soy skim 

on the fermentation rate was again confirmed by Yao et al. (2012) based on the evaluation of 

factors such as water-to-solids ratio, corn particle size, addition of urea, and type of skim on 

the corn-soy co-fermentation performance. Others have used thin stillage derived from corn 

ethanol fermentation as medium for fungal growth (Liang et al., 2012; Mitra et al., 2012) but 

there has been no report on suitability of using soy skim to produce fungal biomass. Fungal 

fermentation by using soy skim medium is yet to be explored.  

3. Distiller’s dried grains with soluble  
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 According to Renewable Fuels Association (RFA, Ethanol Industry Outlook, 2012), 

United States fuel ethanol production from grains increased from 1.63 billion gallons in 2000 

to 13.2 billion gallons in 2010, with 2011 marking another production record for U.S. ethanol 

with an estimated 13.9 billion gallons. Being an alternate supply of petroleum fuel, this 

phenomenal grow in fuel ethanol production from grains is mainly driven by the increasing 

demand of transportation fuels.   

Wet milling and dry-grind are the two major ways used in industry to produce 

ethanol, with over 80% is processed with the dry-grind method (RFA, 2012). The dry-grind 

processing starts with a whole corn kernel and the schematic diagram of a conventional dry-

grind ethanol production is shown in Fig. 3 (Han and Liu, 2010). Approximately two-thirds 

of the corn is consisted of starch, which is converted to ethanol and carbon dioxide during the 

fermentation and thus, the concentration of unfermentable materials such as protein, oil, 

minerals, and vitamins are increased in the residue about three times. These concentrated 

residues become a co-product, which is known as distiller’s dried grains with soluble 

(DDGS) and is a major type of distillers grains (DG). It is reported that the 13.9 billion 

gallons of ethanol produced in 2011 yielded a totally of 35.7 million metric tons of distillers 

grain, with 48% of it consumed by beef, 32% by other dairy, 11% by swine, and 8% for 

poultry (RFA, Ethanol Industry Outlook, 2012).  

Although DDGS has been used as feed ingredient, its high compositional variation 

can reduce profitability in livestock operations and challenge the inclusion level of DDGS in 

animal feed. In a review by Liu (2011), the updated information on the chemical composition 

of DDGS, changes throughout the dry-grind processing, and causes for large variation such 
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as raw materials, effect of fermentation yeast, difference in process methods, and inconsistent 

analytical methods were provided.  

 

 

Fig. 3. Schematic diagram of a conventional dry-grind ethanol production. (adapted from 
Han and Liu, 2010) 
 

 Based on the concentrated amounts of fiber and protein, SSF of DDGS by two fungi, 

Aspergillus oryzae and Rhizopus oligosporus, was studied (Hoskins and Lyons, 2009).  The 

fermented DDGS was used as an enzyme complex supplement in corn mash fermentation 

and ethanol yield was improved considerably. In addition, DDGS was proven to be a suitable 

substrate for SSF with only moderate changes found in its nutritional profile after SSF 

(Hoskins and Lyons, 2009). Yang et al. (2012) also demonstrated that with some 
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supplementation, DDGS could be used as a substrate for SSF to reduce its cellulose and 

hemicellulose content, showing a potential for its use as non-ruminant feed. 

 

Cellulose and its degrading enzyme 

 Cellulose is a linear polysaccharide which composed of D-glucose subunits linked by 

β-1,4 glycosidic bonds. As shown in Fig. 4, the dimer cellobiose is the basic repeating unit of 

cellulose. The cellulose chain ends are different with non-reducing end having closed ring 

structure and reducing end with aliphatic structure and a carbonyl group in equilibrium with 

cyclic hemiacetals (Kontturi et al., 2006). 

 

       

Fig. 4. Molecular structure of cellulose. (adapted from Kontturi et al., 2006) 

 

 Cellulolytic microorganisms are mainly found in eubacteria and fungi, although some 

protozoa are capable of degrading cellulose. These microorganisms are able to interact 

synergistically with non-cellulolytic species in mixed populations to degrade cellulose. The 

complete degradation of cellulose will convert the substrate into carbon dioxide and water 

under aerobic conditions (Béguin and Aubert, 1994).  
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 Cellulases hydrolyze β-1,4-D-glucan linkages in cellulose and produce cello-

oligosaccharides, cellobiose, and glucose as products. A cellulase complex contains three 

major components that work in concert, including endoglucanases (endo-1,4-β-glucanase, 

EGs), cellobiohydrolases, (exo-1,4-β-glucanase, CBHs) and β-glucosidase (βG). EGs are 

capable of hydrolyzing amorphous regions of cellulose fibers and releasing new terminal 

ends. CBHs cleave the existing or terminal ends generated by EGs, with CBH I acting on the 

reducing ends and CBH II acting on the non-reducing ends, liberating cello-oligosaccharides 

and cellobiose units. Both EGs and CBHs can degrade cellulose in amorphous regions, but 

with some exceptions, CBHs are the only enzymes that degrade crystalline cellulose. 

Cellobiose is broken down by βG, releasing two glucose molecules (Beguin and Aubert, 

1994; Pérez et al., 2002).   

 As indicated in Fig. 5, all these enzymes act cooperatively to hydrolyze cellulose to 

glucose, which serve as carbon and energy sources for microorganisms in the system where 

cellulose is degraded.  

 

 
Fig. 5. Schematic diagram of enzyme hydrolysis of cellulose to glucose. EG: 
endoglucanases; CBH: cellobiohydrolases; βG: β-glucosidase.  (adapted from Pérez et al., 
2002) 
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Hemicelluloses and its degrading enzyme 

 Hemicelluloses are heterogenous polymers consist of pentoses (xylose, arabinose), 

hexoses (mannose, glucose, galactose), and sugar acids (Zhang et al., 2011). Xylan, the most 

abundant component in hemicelluloses, is a complex polysaccharide consisting of a linear β-

1,4 linked xylopyranose backbone with acetyl, glucuronosyl, and arabinosyl side chains 

(Fukuda et al., 2009). 

 Many species of bacteria and fungi, as well as several plants are capable of producing 

hemicellulases. Xylan, as the main component in hemicelluloses, requires a cooperative 

action of several enzymes in order to reach a complete degradation. It is hydrolyzed by endo-

1,4-β-xylanase  to xylooligosaccharides, following by β-xylosidase to produce xylose from 

non-reducing ends. In addition, some accessory enzymes such as acetylxylan esterase, α-

glucuronidase, and α-arabinose are required to degrade glucuronoxylans (Pérez et al., 2002; 

Fukuda et al., 2009). Fig. 6 shows a schematic diagram of enzymatic degradation of 

glucuronoxylans (Pérez et al., 2002). 

 

Fig. 6. Schematic diagram of enzyme hydrolysis of glucuronoxylans. 1: endo-1,4-β-xylanase; 
2: acetylxylan esterase ; 3: α-glucuronidase; 4: β-xylosidase; 5: α-arabinose. (adapted from 
Pérez et al., 2002) 
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Enzyme producing fungi 

1. Aspergillus oryzae 

Aspergillus oryzae is a filamentous fungus that has been used in the traditional food 

fermentation in Japan for more than 1000 years for the production of soybean paste, soy 

sauce, and rice wine (Bennett, 2001). Its extensive uses in food fermentation industries have 

prompted it to be listed as the Generally Recognized as Safe (GRAS) strain by the U.S. Food 

and Drug Administration (FDA) (Tailor and Richardson, 1979). Based on its ability to 

secrete a wide range of different enzymes, A. oryzae has been used for commercial enzyme 

production.   

Researches focusing on both cellulase and xylanase secreted by A. oryzae using 

agricultural by-products have been conducted intensively based on its good fermentation 

capability, particularly in producing wide range of enzymes for degradation of plant cell wall 

polysaccharides (de Vries and Visser, 2001). For instance, SmF of cheese whey (Youssef, 

2011) and spent sulphite liquor (Chipeta et al., 2008) can induce the production of xylanase, 

β-xylosidase, endoglucanase, and exoglucanase.  

In addition to SmF, SSF by A. oryzae has also been intensively studied. Szendefy et 

al. (2006) utilized eucalyptus and bagasse pulps as carbon feedstock for A. oryzae growth in 

SSF and reported that the xylanase produced could be used more efficiently in biobleaching 

of paper pulp compared to using commercial enzyme. It was also shown that A. oryzae 

produced at least three kinds of cellulases and two kinds of xylanases when using wheat bran 

as a substrate in SSF and SmF, with higher enzyme yield achieved in solid-state culture 

compared to submerged culture (Yamane et al., 2002). 
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2. Trichoderma reesei 

Trichoderma reesei is a mesophilic fungus that is commonly used as a source of 

cellulases and hemicellulases in industry to hydrolyze plant cell wall polysaccharides 

(Martinez et al., 2008). It is recognized as GRAS strain by FDA and has been shown to 

produce considerable amount of endoglucanases, cellobiohydrolase, β-glucosidase, xylanase, 

and β-xylosidase (Dashtban et al., 2009). Based on its ability to secrete large amounts of 

cellulose-degrading enzymes, T. reesei has been subjected to extensive mutagenesis studies. 

For instance, T. reesei QM 9414 and RUT-30 are the common mutant strains that can 

produce more cellulase than the wild-type strain (QM 6a) (Dashtban et al., 2009). 

The use of agricultural co-products as substrates has drawn interest in industry to 

reduce the cellulase production cost as commercial cellulose sources are expensive. SSF has 

been reported as an attractive process to produce enzymes due to its low waste water 

production and operating expenses (Deschamps et al., 1985). In addition, studies have been 

carried out to compare cellulase production between SSF and SmF. Tengerdy (1996) 

reported that production cost in crude fermentation by SmF was higher compared to SSF. 

Chahal (1985) also showed a higher yield of cellulases from T. reesei by SSF compared to 

SmF.  

As a result, extensive researches have been conducted on using different agricultural 

residues such as rice bran (Latifan et al., 2007), wheat bran (Cen and Xia, 1999), sugarcane 

bagasse and rice straw (Sukumaran et al., 2009), wood chips (Xin and Geng, 2010), and 

kinnow pulp (Oberoi et al., 2010) for SSF by T. reesei to produce enzyme, in particular 

cellulases.  

3. Phanerochaete chrysosporium 



www.manaraa.com

16 

 

 

 

 

Phanerochaete chrysosporium is the most intensively studied white rot fungus that 

possesses the unique ability to degrade lignin, which is the most recalcitrant component of 

plant cell walls, to gain access to cellulose and hemicelluloses. It has been reported as a 

GRAS grade fungus (Ajila et al., 2011) and can simultaneously degrade cellulose, 

hemicelluloses, and lignin (Larrondo et al., 2005).  

P. chrysosporium has been commonly employed in fermentation as it is also able to 

secrete multiple cellulases and hemicellulases such as endoglucanases, cellobiohydrolase, β-

glucosidase, xylanase, and β-xylosidase (Wymelenberg et al., 2005; Pérez et al., 2002). 

Elshafei (1990) reported that corn stover can be utilized as substrate by this fungus for a 

range of cellulases and hemicellulases production by SmF. Szakacs-Dobozi et al. (1992) 

showed that corn stalk was a great medium in secreting xylanase by SmF using P. 

chrysosporium.  

Various benefits from SSF have also drawn the interest in employing P. 

chrysosporium in SSF using agro-industrial residues for enzyme production. For instance, 

SSF of cotton seed coat fragments by P. chrysosporium was shown to secrete several 

enzymes that efficiently bleached the linen fabric (Csiszar et al., 2008). In addition, high 

endoglucanase and filter paper activities were shown from fermented sunflower and corn 

residues by P. chrysosporium SSF (Safari Sinegani et al., 2009).  

Recently, some studies have been conducted using different agricultural by-products 

such as cotton stalks (Shi et al., 2009), corn fiber (Shrestha et al., 2008), and corn stover 

(Vincent et al., 2011) in P. chrysosporium SSF as a pretreatment for ethanol production. 

Enzymes produced from P. chrysosporium SSF assisted the releasing of reducing sugars and 

showed to promote the ethanol production.  
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Enzyme supplementation to animal feed 

 Enzyme production by SSF has been well documented.  These enzymes could be 

either extracted from the fermented substrates or be used together with the substrates after 

SSF for improving animal digestibility purposes. Regalado et al. (2011) reported that 

enzymes extracted from corn stover after SSF increased the in vitro cow’s ruminal and true 

digestibility. Solid-state fermented sorgum stover (Akinfemi, et al., 2010), wheat straw 

(Shrivastava et al., 2011), and paddy straw (Sharma and Arora, 2011) by different enzyme 

producing fungi were also reported to enhance the in vitro digestibility of ruminants. In 

addition, various studies on the effect of enzyme supplementation to animal feed on animal 

performances have also been reported.  For instance, improvements in average daily gain, 

feed conversion ratio, body weight, and apparent crude protein digestibility were found when 

enzyme extracts obtained from A. niger SSF was supplemented to the wheat-based diets for 

broilers (Wang et al., 2005). Meanwhile, A. oryzae fermented soybean meal as compared to 

the unfermented soybean meal was shown to be beneficial to the growth performance of 

broilers (Feng et al., 2007) and piglets (Feng et al., 2007) by increasing the digestibility of 

dietary components, average daily gain, and feed intake. On the other hand, no adverse 

effects were detected on broilers’ growth performance, apparent nutrient digestibility, and 

serum biochemical constituents when maize-based diets were replaced by up to 40% of the 

A. niger fermented fruit meal (from the tropical Terminalia catappa tree) (Apata, 2011). SSF 

of agro-industrial residues has shown promising results in enzyme secretion, as well as feed 

improvement for the animal production industry.  
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Polyunsaturated fatty acid production from oleaginous microorganisms 

The use of long chain omega-3 and omega-6 series of polyunsaturated fatty acids 

(PUFA) has been increased dramatically due to their tremendous potentials as food additives 

and pharmaceutics for relieving heart and circulatory disorders and cancers, as well as 

inflammatory diseases (Jang and Yang, 2008). The addition of PUFA in feed also becomes 

popular in animal industry as improved feed conversion efficiency (Newman et al., 2002), 

increased body weight (Schreiner et al., 2005; López-Ferrer et al., 2001), and reduced 

inflammatory response (Korver and Klasing, 1997) were reported when n-3 PUFA was 

added to poultry diets. PUFA supplementation to diets in poultry could also contribute to 

PUFA enriched meat (Kehui et al., 2010; Geier et al., 2009) and egg yolks (Lewis et al., 

2001; Schreiner, et al., 2004; Oliveira et al., 2010), adding the values for these products.   

Arachidonic acid (ARA, C20:4, n-6) is an essential PUFA that acts as a precursor of 

important eicosanoids such as prostaglandins, thromboxanes, and leukotrienes (Gill and 

Valivety, 1997; Dong and Walker, 2008). Animal livers, egg yolks, and fish oil are the main 

sources of ARA but the relatively low concentration is prompting the industry to seek for 

other alternatives (Dong and Walker, 2008; Singh and Ward, 1997).   

Eicosapentaenoic acid (EPA, C20:5, n-3) is an essential omega-3 fatty acid that has 

unique biological activities in the prevention and treatment of a number of human diseases 

and disorders (Cheng et al., 1999). Marine fish oil being a major source of EPA faces some 

challenges, such as the objectionable taste and odors, high cholesterol content, and heavy 

metal pollutants that are yet to be resolved. Thus, alternatives to fish oil are needed to supply 

the increasing demand for PUFA and avoid the current shortcomings.  
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A number of microorganisms possess the ability to accumulate lipids in their cells 

when cultivated under suitable conditions (Subramaniam et al., 2010). Microorganisms that 

could accumulate lipids at more than 20% of their biomass are classified as oleaginous 

species (Ratledge and Wynn, 2002). The oleaginous microbial species has gained attention in 

food and feed industry as great alternatives to plant and animal sources for long chain PUFA.  

Several distinct pathways are involved in the biosynthesis of microbial PUFA, such 

as de novo synthesis of fatty acids from glucose, the incorporation of exogenous fatty acids 

into lipid structures, and PUFA formation through a series of desaturation and elongation 

(Certik and Shimizu, 1999). The biosynthetic pathways of PUFA in oleaginous species are 

illustrated in Fig. 7. 
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Fig. 7. Biosynthetic pathways of PUFA in oleaginous species. EL: elongase; ∆4, ∆5, ∆6, ∆9, 
∆12, ∆15, ∆17: desaturase. (adapted from Certik and Shimizu, 1999) 
 

 

Oleaginous fungus - Pythium irregulare 

Pythium irregulare is a filamentous fungus and was identified as a potential EPA 

producer through a specific screening of selected genera of fungi (Wessinger et al., 1990). 

SmF has been commonly used as the means for P. irregulare to synthesize EPA. Stinson et 
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al. (1991) employed this fungus and studied the effect of cultural conditions on EPA 

production. It was shown that lowering the incubation temperature from 25˚ C to 12˚ C and 

addition of glucose during fermentation increased the EPA yield.  

Several studies were carried out with different agricultural by-products as the media 

for P. irregulare to produce EPA. For example, sweet whey permeate from dairy industry 

was shown to be a great lactose source for the fungal growth and accumulation of EPA 

(O’Brien et al., 1993). Crude soybean oil, sucrose waste stream, and soymeal waste were 

used as oil and carbon sources for the production of EPA by P. irregularre (Cheng et al., 

1999), and it was shown that soybean oil combined with glucose, with the presence of 

emulsifier, could be an excellent source for PUFA production.  

Athalye et al. (2009) later reported that crude glycerol from biodiesel production 

could be used as carbon source in SmF by P. irregulare for EPA production with the removal 

of two impurities, soap and methanol, which inhibited the fungal growth.  The study also 

showed that addition of flaxseed and soybean oil could increase the fungal biomass and total 

EPA yield. In addition, Liang et al. (2011 and 2012) demonstrated the feasibility of using 

rendered animal proteins and thin stillage, which were derived from meat processing and dry 

corn milling respectively, as feedstocks for P. irregulare in SmF. The small peptides and free 

amino acids produced from enzyme hydrolysis of rendered animal proteins were shown to be 

a great nitrogen source for the fungal growth. On the other hand, thin stillage could provide 

nutrients for P. irregulare in SmF. The fungal culturing resulted in a nutrient-depleted liquid 

after the fermentation. 

Agricultural co-products have been utilized in different ways to maximize their 

values, as well as solving the waste disposable problems. SSF and SmF are two processing 
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technologies that can be employed to increase the values of these co-products. Soybean 

cotyledon fiber may contain usable or digestible proteins during EAEP processing that can 

support the growth of fungi. DDGS contains concentrated amounts of unfermentable 

materials from corn ethanol fermentation such as protein, fat, minerals, and vitamins that can 

be the great nutrient sources for the fungal growth. These two agro-industrial residues can be 

used as substrates in SSF. Their fiber contents could be potentially decreased by mixed 

culture SSF of various lignocellulose-degrading fungi to improve their values as animal feed. 

In addition, soy skim also contains a high amount of protein and peptides that may be utilized 

by oleaginous fungus in SmF to produce PUFA. Therefore, this study focuses on the 

utilization of these materials in both SSF and SmF by various fungi to enhance their values as 

feeds.  

 
 

THESIS ORGANIZATION 

 This thesis consists of a general introduction chapter, followed by two manuscripts of 

research papers and a general conclusions chapter. The papers are in the required formats of 

the corresponding journal. 
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CHAPTER 2. SOLID-STATE FERMENTATION OF SOYBEAN AND 

CORN PROCESSING CO-PRODUCTS FOR POTENTIAL FEED 

IMPROVEMENT 

 
A modified manuscript submitted to Journal of Agricultural and Food Chemistry 

Jun Yi Lio1 and Tong Wang1,2 

 

ABSTRACT 

Two agro-industrial co-products, soybean cotyledon fiber and distiller’s dried grains 

with solubles (DDGS), were used as the substrates to evaluate the effect of co-culturing three 

different fungi, Aspergillus oryzae, Trichoderma reesei, and Phanerochaete chrysosporium, 

on enzyme production by solid-state fermentation (SSF). When soybean fiber was used as the 

substrate, maximum xylanase activity of 757.4 IU/ g and cellulase activity of 3.2 IU/ g were 

achieved with the inoculation and incubation of T. reesei and P. chrysosporium for 36 h, 

followed by A. oryzae for additional 108 h. This inoculation scheme also resulted in the 

highest xylanase activity of 399.2 IU/g compared to other fungi combinations in the SSF of 

DDGS. A large scale SSF by this fungi combination produced fermented products that had 

xylanase and cellulase activity of 35.9-57.0 and 0.4-1.2 IU/g, respectively. These products 

also had 3.5-15.1% lower fiber and 1.3-4.2% higher protein contents, suggesting a potential 

feed quality improvement.  

 

KEYWORDS: Cellulase, distiller’s dried grains with solubles, solid-state fermentation, 

soybean cotyledon fiber, xylanase  
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INTRODUCTION 

  Solid-state fermentation (SSF) is a fermentation process in which microorganisms are 

grown on solid substrate without the presence of free liquid1. SSF has been studied 

intensively for the production of enzymes, antibiotics, surfactants, and other value-added 

products.2 Compared to the submerged fermentation in which nutrients are present in 

dissolved form in a large amount of water, SSF shows a great commercial potential due to its 

lower waste water production and operating expenses, simpler fermentation media 

requirement, superior productivity, and easier prevention of bacterial contamination.3,4  

Various agro-industrial residues, such as sugarcane bagasse, cereal straws, brewer’s 

spent grain, and corn stover, have been used as substrates for SSF to maximize their 

utilizations and to address the waste disposal issues. The enzyme-assisted aqueous extraction 

processing (EAEP) of soybeans developed by Iowa State University’s Center for Crops 

Utilization Research (CCUR) is an environmental friendly method for soybean oil extraction. 

EAEP produces soybean cotyledon fiber and soy skim as co-products.5 The low-valued 

soybean cotyledon fiber has high fiber content and this limits its use for non-ruminant feed. 

Thus, SSF may have a great potential in producing enzymes to breakdown its fiber to 

improve its digestibility. In addition, conventional dry-grind corn ethanol fermentation 

produces significant amount of distiller’s dried grains with solubles (DDGS) as a co-product. 

DDGS contains high amount of protein and fiber and is commonly used in ruminant feed. 

The soy liquid skim from EAEP contains partially hydrolyzed protein and it has been shown 

to be a good nutrient and water source for corn ethanol fermentation.6 The research showed 

an increased ethanol production rate as well as a final DDGS product with higher protein 

contents. The DDGS produced with such skim incorporation is referred as soy-enhanced 
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DDGS. The use of DDGS and soy-enhanced DDGS as non-ruminant feeds should be 

facilitated if the fiber content could be reduced by the enzymes produced by fungi through 

SSF. 

As SSF occurs when microorganisms grow on solid materials without the presence of 

free water, it can only be carried out by a limited number of microorganisms. Fungi are well 

adapted to SSF as their hyphae can grow on particle surfaces and penetrate into the inter 

particle spaces and thereby, colonizing solid substrate.7 Three different fungi, Aspergillus 

oryzae, Trichoderma reesei, and Phanerochaete chrysosporium were chosen for the SSF of 

soybean cotyledon fiber, DDGS, and soy-enhanced DDGS based on their capability in 

producing enzyme, mostly xylanase and cellulase. Aspergillus oryzae has been studied for its 

ability to produce different enzymes by SSF of agro-industrial residues. T. reesei has also 

been used widely for its cellulase production and is commonly used in SSF studies. White rot 

fungi such as P. chrysosporium is known to secrete cellulase and xylanase enzymes8,9 and it 

is also capable of producing lignin-degrading enzyme.10  

Co-culturing of T. reesei and different Aspergillus species in SSF has been shown to 

enhance xylanase11,12 and cellulase production.13-16 The action of multiple enzymes and the 

interaction among different fungi are believed to be necessary to decompose complex 

substrates.  

SSF of soybean cotyledon and DDGS with the three individual fungi A. oryzae, T. 

reesei, and P. chrysosporium were previously investigated by Yang et al.17 but the effect of 

co-culturing using various combination of the fungi was unknown. Thus, the objectives of 

this study were: (1) to investigate if there is any synergistic effect among the three fungi 

based on the xylanase and cellulase production; (2) to determine the best combination of 



www.manaraa.com

35 

 

 

 

 

fungi for  large scale SSF; and (3) to examine the compositional change in soybean cotyledon 

fiber, DDGS, and soy-enhanced DDGS after large scale SSF. 

 

MATERIALS AND METHODS 

   Microorganisms, Medium, and Culture Preparation. Aspergillus oryzae (ATCC 

1003), Trichoderma reesei (ATCC 13631), and Phanerochaete chrysosporium (ATCC 

24725) were provided by Professor Hans van Leeuwen of Department of Civil, Construction 

and Environmental Engineering, Iowa State University. All three microorganisms are 

generally recognized as safe18-20 and suitable for animal feed applications. The strains were 

cultured on potato dextrose agar plates, and the plates were incubated at 30˚ C for 7 days 

until complete sporulation. The spores from the plates were suspended in 15% sterile 

glycerol in water. The suspensions were used as cultures and were kept in vials at -20 ˚C 

until use. 

 

  Substrate Preparation and Chemicals. Soybean cotyledon fiber (6.4% protein dwb) 

was produced in the pilot plant of CCUR, Iowa State University via two stage counter-

current enzyme-assisted aqueous extraction processing (EAEP).5 To obtain DDGS or soy-

enhanced DDGS, the first batch of corn ethanol fermentation was performed in the Iowa 

State University BioCentury Research Farm according to the conventional method19 with 

100% water. A second batch of corn fermentation was performed by the similar condition 

except that 50% of the water was replaced with soy skim fraction that was obtained from 

EAEP. Following the corn ethanol fermentation, downstream concentration and drying in the 

pilot plant, DDGS (34.3% protein dwb) and soy-enhanced DDGS (44.5% protein dwb) were 
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produced. The schematic diagram of this integrated soybean-corn biorefinery system is 

shown in Figure 1.  The initial enzyme activities and composition of all three substrates were 

measured as describe below.  

 All chemicals and medium ingredients were purchased from Fisher Scientific 

(Pittsburgh, PA), Sigma Chemicals (St. Louis, MO) or BD (Franklin Lakes, NJ). Soybean 

hulls were provided by MicroSoy® Corporation (Jefferson, IA).  

 

Solid-State Fermentation. Two culture loops of A. oryzae, T. reesei, and P. 

chrysosporium were transferred to 250 mL Erlenmeyer flask containing 50 mL of yeast 

extract peptone dextrose medium made of 2% yeast extract, 1% peptone, and 2% dextrose. 

The flasks were shaken at 150 rpm in a MAXQ Mini 4450 orbital shaker (Thermo Scientific, 

Asheville, NC) at 30°C for 24 h for A. oryzae and T. reesei, and 48 h for P. chrysosporium. 

Inoculums of each fungus at 5% (v/w) was used to inoculate a 40 g (as-is) of substrates in 

mixed fungi culture, whereas a 10% (v/w) inoculums was used in the single fungus culture. 

Soybean fiber with original moisture content of 85% was adjusted to moisture content of 

75% by using soybean hulls and the pH was adjusted to 5.0 as reported.17 DDGS was 

hydrated to 85% of moisture and was adjusted to moisture content of 75% with soybean 

hulls, using the same amount as for soybean fiber. Soybean hulls improve the porosity of 

substrates for better fungal growth as demonstrated in our previous study.21 The pH of DDGS 

was adjusted to 5.0 as well. SSF was done by incubating the substrates at 30˚ C for 6 days. 

No nutrients or minerals were supplemented to the substrates in this study. All the substrates 

were sterilized by holding them at 121 ˚C and 103 kPa in autoclave for 20 min. The number 

of replicate that was used on each treatment is shown in each section below. A water 
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reservoir was placed in the incubator to maintain the relative humidity thus moisture level of 

the substrate.  

 

Effect of Dual and Trio Fungi Combination SSF on Enzyme Activities of 

Soybean Cotyledon Fiber. Fungi was inoculated in dual and trio combinations to investigate 

if there is synergistic effect among the fungi. Soybean fiber was inoculated with single 

fungus as a comparison. Xylanase and cellulase activities of the fermented soybean fiber 

were measured after 6 days of SSF at 30˚ C. All treatments were repeated two times. 

  Effect of Different Inoculation Time of A. oryzae and T. reesei. Due to the absence of 

synergistic effect among different fungi when inoculated at the same time, inoculation time 

of A. oryzae and T. reesei was adjusted to determine the effect of inoculation sequence on 

enzyme activities. A. oryzae was inoculated at time 0, followed by inoculation of T. reesei to 

the 36 h A. oryzae fermented soybean fiber, which was expressed as A 36h+T.  Selection of 

36 h as incubation time was based on previous studies.13,14 Treatment with T. reesei 

inoculation and incubation for 36 h, followed by inoculation of A. oryzae, expressed as T 

36h+A, was investigated as well. Treatments of single fungus inoculation with A. oryzae and 

T. reesei, co-culture inoculation with A. oryzae and T. reesei (A+T) at the same time were 

used as comparison. Xylanase and cellulase activities were measured. All treatments were 

repeated three times.  

  Effect of Different Inoculation Time of P. chrysosporium and T. reesei. The 

inoculation sequence of T. reesei and P. chrysosporium was tested with the same manner as 

the SSF with A. oryzae and T. reesei. All treatments were repeated three times.  
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Effect of Different Inoculation Time of A. oryzae and P. chrysosporium. For A. oryzae 

and P. chrysosporium with different inoculation sequence, same approach was used as the 

combinations above. All treatments were repeated three times.  

 Effect of Different Inoculation Time of A. oryzae, T. reesei, and P. chrysosporium. To 

confirm and further compare the results obtained from different inoculation sequence with 

various dual fungi combinations, combinations with the expected high enzyme activities 

from previous trials were made and evaluated. Two new treatments were used, which were 

incubation of T. reesei and P. chrysosporium for 36 h, followed by A. oryzae, expressed as 

(T&P) 36h+A, and incubation of T. reesei for 36 h, followed by A. oryzae and P. 

chrysosporium, expressed as T 36h+(A&P). For comparison, single culture inoculation of T. 

reesei and T. reesei inoculation for 36 h, followed by A. oryzae (T 36h+A) were also 

included. All treatments were repeated three times. 

 

Effect of Dual and Trio Fungi Combination SSF on Enzyme Activities of DDGS. 

SSF with the DDGS substrate was conducted by using different dual and trio fungi 

inoculation with simpler design based on the results from the previous batches of soybean 

fiber SSF. Single fungus inoculations were included in the same batch of SSF as 

comparisons. Based on soybean fiber SSF observation and other studies, treatment with 

inoculation of T. reesei and A. oryzae (T+A) was replaced by incubation of T. reesei for 36 h, 

followed by inoculation of A. oryzae (T 36h+A). The best fungi combination from soybean 

fiber SSF that had the highest enzyme activity, (T&P)36h+A, was used in the SSF of DDGS. 

Xylanase and cellulase activities of the fermented DDGS were measured after 6 days of SSF 

at 30˚ C. All treatments  were repeated three times. 
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  Effect of Large Scale SSF on Enzyme Activities and Composition Change in the 

Three Fermented Materials. In order to produce large quantities of solid-state fermented 

materials for preliminary feeding trials, large scale SSF, (300 g, as-is) of soybean fiber, 

DDGS, and soy-enhanced DDGS were conducted. Since high amount of soybean hulls was 

not desirable for feeding trials, soybean cotyledon fiber was freeze dried prior to SSF to 

reduce the moisture content to minimize the use of soybean hulls. The moisture content of 

soybean fiber and DDGS was adjusted to 50% with the addition of 5% (dwb) soybean hulls 

to improve their porosity. Since the moisture content of 50% in soy-enhanced DDGS was too 

high based on visual observation of the presence of free water, soy-enhanced DDGS was 

adjusted to moisture content of 40%. All substrates had water activity at above 0.90.  

The pH of the substrates was adjusted to 5.0. A 5% (v/w) of fungal inoculums was 

used to inoculate a 300 g (as-is) of substrates, with the inoculation and incubation of T. reesei 

and P. chrysosporium for 36 h, follow by inoculation of A. oryzae, expressed as (T&P) 

36h+A. This inoculation scheme was chosen from the previous batches of small scale SSF. 

SSF was done by incubating the samples at 30˚ C for 6 days, for the duplicate SSF of the 

three different substrates. Dry matter mass, xylanase and cellulase activities of the fermented 

substrates were measured after the SSF. All the fermented substrates were dried at 80 ˚C until 

completely dry and the replicates of the same substrates were mixed together for fiber, 

protein, oil, and ash content analyses as described below. 

 

 Enzyme Activity Assays. Enzymes were extracted by suspending 3 g (as-is) of 

fermented samples in 30 mL of 0.2 M sodium acetate-acetic buffer (pH 4.8) overnight at 4˚C. 
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Following the centrifugation at 3,000 x g for 10 min with a IEC Centra CL3 centrifuge 

(Thermo Electron Corporation, Waltham, MA), the supernatant was collected and used as the 

enzyme extract for different enzyme assays. 

  Xylanase activity was assayed by measuring the reducing sugar from birch wood 

xylan (Sigma Chemicals, St. Louis, MO) which was dissolved by 0.2 M sodium acetate–

acetic acid buffer (pH 4.8) according to Bailey et al.19 with minor adjustment. The reaction 

mixture containing 1.8 mL of 1% (w/v) xylan solution and 0.2 mL enzyme extract (diluted 

by the same buffer if needed) was incubated at 50˚C for 60 min. The reaction was stopped by 

adding 2 mL of 3,5-dinitrosalicylic acid (DNS) reagent and was incubated for 10 min in a 

boiling water bath for color development. After cooling, the mixture was diluted to a total of 

15 mL with distilled water and was then measured against a reagent blank at 550 nm with a 

DU® 720 UV/ Vis spectrophotometer (Beckman Coulter, Brea, CA).  The international unit 

(IU) per g of dried SSF sample was determined by the equation of  

 ��������	�	
���
�	��	���	�	��������� 

= � × Vt	 × 6.66�/Vr × T ×W� 

where R is the reducing sugar released in the reaction (mg), Vt is the total volume of the 

enzyme extract (mL), Vr is the volume of enzyme extract used in the reaction (mL), T is the 

time of reaction (min), W is the weight of the dried SSF sample used (g), and 6.66 represents 

the micromole (µmol) of xylose. One unit of xylanase activity is defined as the amount of 

enzyme needed to release one µmol of reducing sugar (equivalent to xylose) from birch wood 

xylan per minute under our assay conditions.  

  Cellulase activity was measured using the filter paper activity assay20 with some 

modification. Briefly, 0.5 mL of enzyme extract and 1.5 mL of 0.05 M sodium citrate-citric 
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acid buffer (pH 4.5) were incubated for 10 min at 50 °C in a water bath. Whatman No. 1 

filter paper of 50 mg was then added into the mixture and incubated at 50 °C for 60 min. The 

reaction was stopped by adding 1.5 mL of DNS reagent and the mixture was incubated for 5 

min in a boiling water bath for color development. The mixture was then cooled and diluted 

to a total of 20 mL with distilled water. The mixture was measured against the reagent blank 

at 540 nm with a spectrophotometer. The international unit (IU) per g of dried SSF sample 

was determined by the equation of  

 !���"����	�	
���
�	��	���	�	��������� 

= � × Vt	 × 5.56�/Vr × T ×W� 

  All parameters are as explained under xylanase activity, except that 5.56 represents 

the micromole (µmol) of glucose. All assays were performed in duplicate.  

 

Fiber Content Quantification. Neutral detergent fiber (NDF), acid detergent fiber 

(ADF), and acid detergent lignin (ADL) analyses were performed according to the methods 

of Goering and Van Soest.21 All samples were analyzed in duplicate. 

For NDF determination, 0.5 g of oven-dried sample was heated in 100 mL of neutral 

detergent with addition of 0.5 g of sodium sulfite and 2 mL of decahydronaphthalene to 

boiling for 1 h in a Erlenmeyer flask. Sample was filtered through pre-weighed filter paper, 

followed by 3 times of washing with boiling water, then twice with acetone. The residue was 

then dried overnight at 105 °C and weighed after cooling in a desiccator. The NDF is 

calculated as percentage of residue relative to initial sample weight. 

For ADF determination, 1 g of oven-dried sample was heated in 100 mL of acid 

detergent with addition of 2 mL of decahydronaphthalene to boiling for 1 h in a Erlenmeyer 
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flask. Sample was treated in the same way as in NDF determination. The ADF is calculated 

as the percentage of residue relative to initial sample weight. 

For ADL determination, the ADF procedure was used as a preparatory step. The dried 

filter paper with ADF from the previous step was transferred into a 30 mL pre-weighed 

fritted crucible (coarse porosity). The content in the crucibles was covered with 72% sulfuric 

acid and stirred with a glass rod occasionally to break the lumps and refilling the content at 

hourly interval was done as the acid drained away. The acid was filtered after 3 h at ambient 

temperature, followed by 3 times of washing with boiling water. The crucible was dried 

overnight at 105 °C and weighed after cooling in a desiccator. The crucible was then heated 

in the Thermolyne furnace (Thermo Scientific, Waltham, MA) at 500 °C for 3 h for ash 

determination. The percentage of ADL is calculated as the difference between the acid 

insoluble residue and ash relative to initial sample weight. 

ADL represents the lignin content. The difference of NDF and ADF is an estimate of 

hemicellulose, whereas the difference of ADF and ADL is an estimate of cellulose.  

 

Determination of Dry Matter Mass, Protein, Oil, and Ash Contents. The dry 

matter mass was determined by weighing after oven drying at 105 ˚C overnight. Protein 

content was determined using the Dumas nitrogen combustion method using an 

ElementarVario MAXCN analyzer (Elementar Analysensysteme GmbH, Hanau, Germany) 

with a conversion factor of 6.25, and oil content by acid hydrolysis method (AOAC official 

method 922.06). Ash content was determined by heating the samples at 550 ˚C overnight 

(AOAC 923.03). The other carbohydrate content was obtained by subtracting the protein, oil, 

fiber, and ash contents from 100%.  
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Statistical Analysis. All treatments were repeated as described under each 

experiment. The data were analyzed by ANOVA (Analysis of Variance) using SAS (Version 

9.1, SAS Institute Inc., Cary, NC) and the Least Significant Difference (LSD) mean 

comparison was used to compare the treatment mean differences at P = 5%. 

 

RESULTS AND DISCUSSION 

Effect of Dual and Trio Fungi Combination SSF on Enzyme Activities of 

Soybean Cotyledon Fiber. The enzyme activities of unfermented soybean fiber were 

assayed as control, and it had xylanase activity of 8.0 IU/g and cellulase activity of 0.3 IU/g 

as shown in Table 1. Figure 2 shows both xylanase and cellulase activities among different 

combinations of fungi after SSF at 30˚ C. Soybean fiber with mixed inoculation of T. reesei 

and P. chrysosporium had higher acitivity for both enzymes compared to other mixed fungi 

inoculated samples. However, its xylanase activity was lower than the T. reesei inoculation 

alone. Fermented soybean fiber with other combinations of fungi all showed lower activity 

for both enzymes compared to the single fungus inoculation. The low enzyme activities 

obtained from this mixed fungi culture SSF was unexpected, especially with the combination 

of T. reesei and Aspergillus species, which was shown to have synergistic effects in 

producing xylanase and cellulase.11-16 Fungi may have responded differently to different 

substrate and growing conditions and our soybean fiber SSF conditions might not be the 

optimum for observing the synergistic effect among fungi. On the other hand, the inoculation 

sequence of different fungal strains might play a significant role in stimulating the enzyme 

production. Castilo et al. reported that mixed fungal inoculation sequence of  T. reesei and A. 
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niger must be adjusted carefully due to the differences in individual fungal growth rates, 

enzyme production rates, and the possible dominance of one fungus over the other.11 

 

Effect of Different Inoculation Time of A. oryzae and T. reesei. Investigation on 

different inoculation time of A. oryzae and T. reesei was conducted to determine its effect on 

enzyme production. Since Dueñas et al.23 reported that mixed culturing was not beneficial 

when Trichoderma reesei and Aspergillus phoenicis were inoculated together, and knowing 

that T. reesei produces reducing sugars through cellulose hydrolysis that may accelerate the 

growth of Aspergillus, we conducted sequential inoculations. As shown under experiment 1 

in Figure 3, xylanase activity of 1445.7 IU/g was obtained in the fermented soybean fiber 

with the inoculation of T 36h+A and this activity was significant higher than all the other 

treatments. To validate the synergistic effect observed, the SSF experiment with the same 

treatments was repeated and the results are presented as experiment 2 in Figure 3. Again, the 

highest xylanase activity of 855.8 IU/g was obtained in the fermented soybean fiber with the 

inoculation of T 36h+A. Xylanase are mainly produced by Aspergillus and Trichoderma 

spp.24 Our findings showed that synergistic effect occured when these two fungi were 

inoculated with an appropriate sequence that stimulated higher xylanase production. Besides 

xylan (hemicellulose), studies have shown that xylanase activity could be induced when T. 

reesei was grown in cellulose.16 Our soybean fiber contained high level of both hemicellulose 

(26.5%) and cellulose (22.3%), so this may explain the high level of xylanase activity in 

soybean fiber inoculated with T. reesei, as well as mixed culture of T. reesei and A. oryzae 

with a proper inoculation sequence. Unlike the xylanase activiy, no significant synergism 

was found in the cellulase activities with the mixed fungi of A. oryzae and T. reesei. 
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Although a basal medium of Mandal & Reese25 containing all nutrients has been commonly 

added to solid substrates to give optimum fungal growth and increase the cellulase 

production, we did not add any external nutrients in this experiment. We intented to test if 

this substrate alone can simply be solid-state fermented to improve its compositional profile.  

Both xylanase and cellulase activities of A. oryzae fermented soybean fiber from 

Figure 2 were lower than the enzyme activities shown in Figure 3. Also, inconsistency 

happened to enzyme activities of P. chrysosporium fermented soybean fiber shown in Figure 

2 compared to the enzyme activies obtained from other batches of SSF as discussed below. 

Such inconsistencies were unexpected and they might be caused by the viability variance 

among samples in the individual inoculum vials, handling errors, and the complexity of 

biological system.  

 

Effect of Different Inoculation Time of P. chrysosporium and T. reesei. To determine 

if different inoculation time would result in synergistic effect with fungi combination of P. 

chrysosporium and T. reesei, SSF of soybean fiber with this two fungi inoculation was done. 

As shown under experiment 1 in Figure 4, fermented soybean fiber with the inoculation of 

T+P and T 36h+P showed the highest xylanase activities among all fermented samples. 

However, these two combinations did not always contribute to the highest cellulase activities. 

Fermented soybean fiber with both the inoculation of P and P 36h+T had higher cellulase 

production. Due to the large standard deviation from this batch of SSF, another batch of SSF 

with the same treatments was conducted. The results shown under experiment 2 in Figure 4 

indicate no significant differences among inoculation of T, T+P, and T 36h+P in xylanase 

activities. Large standard deviation was again found in enzyme activities. The lack of 
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homogeneity in fungal growth on the substrate might have contributed to the large 

differences. Nonetheless, cellulase activities measured from the repeated SSF showed similar 

trend compared to experiment 1. Based on the results obtained from both experiments, the 

treatment of T+P was identified to have a great potential in producing high level of xylanase 

and cellulase. As discussed earlier, the high hemicellulose and cellulose content in soybean 

fiber might help induce xylanase production in T. reesei inoculated substrate and also 

increase xylanase activity in treatment of T+P. The combination of T+P was also found to be 

the best in lignocellulosic decomposition of timber waste.26 Such combination was also used 

in other studies in composting different solid waste.27,28 As a result, this combination was 

used in our study for further investigation.  

 

Effect of Different Inoculation Time of A. oryzae and P. chrysosporium. SSF of 

soybean fiber with inoculation of A. oryzae and P. chrysosporium at different inoculation 

time was investigated as well. Xylanase and cellulase activities of various fungi treatments 

and with different inoculation time are shown in Figure 5. Based on the two enzyme 

activities, no significant synergistic effect was observed, and xylanase activity among these 

combinations was lower compared to the other two fungal combinations. 

 

Effect of Different Inoculation Time of A. oryzae, T. reesei, and P. chrysosporium. 

The treatments that gave high enzyme activities from each dual combination of SSF were 

further combined and such combination effects on xylanase and cellulase activities were 

evaluated. As shown in Figure 6, both enzyme activities from T. reesei inoculated soybean 

fiber were the lowest among all the treatments. No significant difference was found in 
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xylanase activities among the three combinations, T 36h+A, (T&P) 36h+A, and T 

36h+(A&P). Considering P. chrysosporium as lignin-degrading enzyme producer29,30, the 

combination including this fungus should be chosen because soybean fiber contains lignin. In 

addition, lignin degradation enables the exposures of hemicellulose and cellulose for 

degradation. Summarizing data gathered from all previous batches of soybean fiber SSF, 

combination of (T&P) 36h+A was chosen as the final best fungi combination. 

Our soybean cotelydon fiber SSF with the inoculation of T. reesei did not produce 

significant amount of cellulase, although T. reesei has been reported as a promising strain in 

producing cellulase. The cellulolytic activity of T. reesei wild-type strain (QM 6a) that was 

used in our study has been improved by different mutagenesis methods that have resulted in 

mutants such as QM 9414 and RUT-C30 that can produce 4-5 times more cellulase than the 

wild-type strain.31 This might partially explain the low cellulase activity of the mixed fungal 

fermentation using T. reesei compared to other studies that employed T. reesei mutants.  

Some batch to batch differences in enzyme acitivities were found in the fermented 

soybean fiber. These may be caused by the lack of homogeity in the substrate, soybean 

cotyledon fiber, that was produced from pilot-plant scale EAEP.5  Approximately 45 kg (as-

is) of soybean fiber was produced in each trial of EAEP and the hand-mixing might not have 

been adequate to obtain a homogenous mixture for all treatments and replicates. Having a 

more effective means of mixing during production or fermentation in the future may help 

minimize the variability in SSF. 

 

Effect of Dual and Trio Fungi Combination SSF on Enzyme Activities of DDGS. 

The enzyme activities of unfermented DDGS were assayed as control and are shown in Table 
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1. Inoculation with different fungi combinations for DDGS SSF was done in a simpler way 

by using the results from soybean fiber SSF. The two enzyme activities of the fermented 

substrates are presented in Table 2. The fermented sample with the inoculation of (T&P) 

36h+A, which was the best combination for soybean fiber SSF, showed the highest xylanase 

activity compared to the inoculation with single fungus and with other fungi combinations. 

Meanwhile, the fermented DDGS with inoculation of P. chrysosporium was identified to 

produce high xylanase activity of 364.8 IU/g. This is appreciably higher than all the batches 

of soybean fiber SSF inoculated with P. chrysosporium. In addition, this sample also showed 

the highest cellulase activities of 7.3 IU/g. This suggests that in contrast to soybean fiber, 

DDGS might have a better composition to support the growth of and enzyme production 

from P. chrysosporium in SSF. According to Leštan et al.32, the addition of linseed oil to the 

growth medium strongly stimulated mycelium biomass production of P. chrysosporium. 

DDGS has higher content of oil compared to soybean fiber as shown in Table 1, and this may 

explain the better growth of P. chrysosporium in DDGS, thus contributing to the higher 

enzyme production. Considering the high hemicellulose content of 24.9% compared to the 

low cellulose content of 11.6% in DDGS, xylanase activity is considered to be more 

important in breaking down the substrate. Therefore, inoculation of (T&P)+36h A was 

chosen as the best combination for further study. This same best fungi combination as for 

soybean fiber allows the future comparison of various substrates under the same fermentation 

condition.  

 

Effect of Large Scale SSF on Enzyme Activities and Composition Change in the 

Three Fermented Materials. The scale 300-g scale SSFs of soybean fiber, DDGS, and soy-
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enhanced DDGS with the best fungi combination, (T&P) 36h+A, were conducted, and 

xylanase and cellulase activities of the fermented materials are shown in Table 3. Compared 

to the SSF of soybean fiber and DDGS with the same fungi inoculation that were done on 

small scale (40 g), the enzyme productions from the large scale SSF were much lower. The 

lower amount of soybean hulls (5%, dwb) added in the substrates for the 300-g scale SSF 

may have contributed to the lower enzyme activities because all enzyme activities are 

presented as IU for one gram of dried substrate without the inclusion of the soybean hulls. 

The higher amount of soybean hulls (47%, dwb) used previously in the substrates for small 

scale SSF, the lower amount of dried soybean fiber or DDGS were included in the 

calculation, thus contributing to the higher enzyme activities. The other factor may be that 

the lower amount of soybean hulls used in the large sale of SSF caused a compact texture of 

the substrates, thus reduced the fungal growth and hyphae penetration. As shown in Table 3, 

both enzyme activities indicated a similar trend, with fermented soybean fiber having the 

highest activities, followed by DDGS and soy-enhanced DDGS. However, the xylanase 

activity of soybean fiber and DDGS was not significantly different due to the large standard 

deviation found in fermented soybean fiber. Consistent with the results from Yang et al.17, 

soybean fiber is shown to be a better substrate for SSF compared to DDGS. This may be due 

to the limited nutrient availability in DDGS for fungal growth. The high amount of the other 

carbohydrate content in soybean fiber (Table 1) compared to DDGS and soy-enhanced 

DDGS could be a good carbon source to support the growth of fungi and to produce enzyme. 

As shown in Table 3, soy-enhanced DDGS demonstrated low enzyme activities after SSF. 

The high ash content in soy-enhanced DDGS as shown in Table 1 indicates the high level of 
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salt, and this may be a reason of its poor fungal growth. Salt was shown to have adverse 

effects on microorganisms and resulted in reduced biological activity.33 

Substrates weight reduction for 300-g scale fermentation was recorded. 

Approximately 20.4% reduction in dry matter mass was found in fermented soybean fiber, 

followed by reduction of 9.9% in DDGS, and 6.4% in soy-enhanced DDGS. The dry matter 

reduction reflected the vigor of fungi growth, with higher reduction indicating better fungal 

growth. The dry matter reduction of the three fermented samples correlated well with the 

enzyme production. 

Table 4 shows the composition of unfermented and fermented soybean fiber, DDGS, 

and soy-enhanced DDGS. The theoretical values are those with the disappearance of dry 

matter taken into consideration. Fiber content decreased substantially in each fermented 

samples with hemicellulose content showed a greater reduction compared to cellulose and 

lignin content. This trend corresponded well to the xylanase and cellulase activities in the 

fermented samples. The reductions of hemicellulose content in the fermented soybean fiber, 

DDGS, and soy-enhanced DDGS were 13.4, 11.5, and 4.5%, respectively. The degree of 

reduction is proportional to the increase in xylanase activity. Cellulose contents in fermented 

soybean fiber and soy-enhanced DDGS increased after the SSF. The reduction in dry matter 

by SSF as a result of the metabolism of substrate by microorganisms may have contributed to 

the increase in cellulose content. By taking the dry matter reduction into consideration, the 

theoretical value of cellulose showed a 1.6 and 2.2% decrease in fermented soybean fiber and 

DDGS and a slight increase of 0.4% in fermented soy-enhanced DDGS. Lignin content in all 

the fermented materials decreased after SSF, with the highest reduction in DDGS, followed 

by soy-enhanced DDGS, and soybean fiber. This finding could be explained by the high oil 
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content in DDGS and soy-enhanced DDGS that may have stimulated the growth of P. 

chrysosporium as discussed earlier. 

Protein content showed a slight increase after SSF, and this could be explained by the 

concentrating effect caused by microorganism metabolizing the substrates. The higher 

protein content in the fermented product is expected to improve its nutritional value as 

animals feed. Oil content of the three substrates did not change significantly after SSF, unlike 

other report that suggested that Aspergillus and Rhizopus metabolized a portion of fat in the 

DDGS.34 Liu reported that DDGS composition varied with the differences in feedstock and 

composition, process methods and parameters, and the fermentation yeast.35 The composition 

of DDGS used in this study may be different from the one used in the other study, and this 

may have caused the difference in fungal growth and substrate composition change. The 

slight increases of the total oil content in soybean fiber, DDGS, and soy-enhanced DDGS 

after SSF could be from the concentration effect.  

  In summary, synergistic effect was found among the three fungi used in the SSF of 

soybean cotyledon fiber and DDGS. The inoculation sequence of different fungi was 

identified as a important factor to allow the best interaction among the fungi to achive better 

growth and higher enzyme production. Combination of fungi with the incubation of T. reesei 

and P. chrysosporium for 36 h, followed by A. oryzae showed the best results in soybean 

cotyledon fiber SSF. The fermented soybean fiber has maximum xylanase activity of 757.4 

IU/ g and cellulase activity of 3.2 IU/ g. This inoculation scheme also led to the highest 

xylanase activity of 399.2 IU/g in DDGS SSF. The fermented materials produced from the 

300-g scale SSF showed 3.5-15.1% reduction fiber content and 1.3-4.2% increase in protein 

content, demonstrating the potential for non-ruminant feed improvement.  
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Figure 1. Schematic diagram of integrated soybean-corn biorefinery system. 
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Figure 2. Effect of different fungi and combination on enzyme activities of soybean 
cotyledon fiber. N=2. The means followed by the same letter are not significantly different at 
P=5%. LSD0.05 = 39.6 for xylanase activity and LSD0.05 = 1.1 for cellulase activity. A: A. 

oryzae; T: T. reesei; P: P. chrysosporium. 
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Figure 3. Effect of different inoculation time of A. oryzae and T. reesei on enzyme activities 
of soybean cotyledon fiber. N=3. The means followed by the same letter within each 
experiment are not significantly different at P=5%. LSD0.05 = 148.2 for xylanase activity and 
LSD0.05 = 0.7 for cellulase activity in experiment 1. LSD0.05 = 131.7 for xylanase activity and 
LSD0.05 = 0.8 for cellulase activity in experiment 2. A: A. oryzae; T: T. reesei; A 36h+T: A. 

oryzae for 36 h, followed by T. reesei; T 36h+A: T. reesei for 36 h, followed by A. oryzae. 
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Figure 4. Effect of different inoculation time of P. chrysosporium and T. reesei on enzyme 
activities of soybean cotyledon fiber. N=3. The means followed by the same letter within 
each experiment are not significantly different at P=5%. LSD0.05 = 299.4 for xylanase activity 
and LSD0.05 = 0.6 for cellulase activity in experiment 1. LSD0.05 = 219.3 for xylanase activity 
and LSD0.05 = 1.0 for cellulase activity in experiment 2. T 36h+P: T. reesei for 36 h, followed 
by P. chrysosporium; P 36h+T: P. chrysosporium for 36 h, followed by T. reesei. 
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Figure 5. Effect of different inoculation time of A. oryzae and P. chrysosporium on enzyme 
activities of soybean cotyledon fiber. N=3. The means followed by the same letter are not 
significantly different at P=5%. LSD0.05 = 37.9 for xylanase activity and LSD0.05 = 0.5 for 
cellulase activity. A 36h+P: A. oryzae for 36 h, followed by P. chrysosporium; P 36h+A: P. 

chrysosporium for 36 h, followed by A. oryzae. 
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Figure 6. Effect of different inoculation time of A. oryzae, T. reesei and P. chrysosporium on 
enzyme activities of soybean cotyledon fiber. N=3. The means followed by the same letter 
are not significantly different at P=5%. LSD0.05 = 279.8 for xylanase activity and LSD0.05 = 
0.7 for cellulase activity. T 36h+A: T. reesei for 36 h, followed by A. oryzae; (T&P) 36h+A: 
T. reesei and P. chrysosporium for 36 h, followed by A. oryzae; T 36h+(A&P): T. reesei for 
36 h, followed by A. oryzae and P. chrysosporium. 
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Table 1. Enzyme activities and compositions of soybean cotyledon fiber, DDGS, and soy-enhanced DDGS. 

  Enzyme activities (IU/g) Composition (%, dwb) 

  
Xylanase  Cellulase Hemicellulose Cellulose Lignin Oil Protein Ash 

Simple 
carbohydrate 

Soybean fiber 8.0 0.3 26.5 22.3 1.9 3.3 6.4 4.3 35.3 

DDGS 1.9 0.2 24.9 11.6 7.8 14.0 34.3 4.3 3.2 

Soy-enhanced 
DDGS 

1.7 0.3 22.9 5.5 1.6 11.8 44.5 7.2  6.5 
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Table 2. Effect of different fungi combination on enzyme activities of DDGS. 
 

Fungi combination 
A T P T 36h+A T+P A+P (T&P) 36h+A A+T+P LSD0.05 

Xylanase 
activity 
(IU/g) 

88.3 
± 5.1 f 

218.3        
± 24.6 d 

364.8       
± 22.3 b 

293.1                          
± 7.8 c 

157.0        
± 25.3 e 

114.8        
± 5.7 f 

399.2 
±  31.4 a 

120.0       
± 11.5 f 

33.4 

Cellulase 
activity 
(IU/g) 

2.1 
± 0.5 b 

2.3 
± 0.7 b 

7.3 
± 0.4 a 

1.8 
± 0.2 b 

2.0 
± 0.4 b 

1.9 
± 0.4 b 

2.0 
± 0.2 b 

1.7 
± 0.1 b 

0.7 

 
N=3. Data are presented as Mean ± SD. The values followed by the same letter in the same row are not significantly different at 
P=5%. A: A. oryzae; T: T. reesei; P: P. chrysosporium; All the different sequences are described in Fig. 6. 
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Table 3. Effect of SSF using the best combination of fungi on enzyme activities of soybean cotyledon fiber, DDGS, and soy-
enhanced DDGS . 
 

  Soybean fiber DDGS Soy-enhanced DDGS LSD0.05 

Xylanase activity (IU/g) 57.0 ± 9.7 a 49.3 ± 3.0 ab 35.9 ± 2.2 c 19.1 
Cellulase activity (IU/g) 1.2 ± 0.1 a 0.6 ± 0.0 b 0.4 ± 0.1 c 0.2 

 
N=2. Data are presented as Mean ± SD. The values followed by the same letter in the same row are not significantly different at 
P=5%. 
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Table 4. Composition of unfermented and SSF soybean cotyledon fiber, DDGS, and soy-enhanced DDGS. 
 

Substrates 
  

Composition (%), dwb 
Hemicellulose Cellulose Lignin Protein Oil 

Soybean 
fiber 

Unfermented*  22.0  25.5  1.2  8.3 3.5 

Fermented 10.8  30.1  0.9  12.5 5.0 

Theoretical value 8.6  24.0  0.8  9.9 4.0 
Increase (+) or decrease (-) -11.2  4.5  -0.2  4.2 1.5 
Theoretical increase (+) or decrease (-) -13.4  -1.6  -0.4  1.6 0.5 

     

DDGS 

Unfermented*  30.5 13.8 5.7 33.0 11.3 

Fermented 21.0 12.8 1.1 36.3 14.6 

Theoretical value 18.9 11.5 1.0 32.7 13.2 
Increase (+) or decrease (-) -9.5 -1.0 -4.6 3.3 3.3 
Theoretical increase (+) or decrease (-) -11.5 -2.2 -4.7 -0.3 1.9 

     

Soy-
enhanced 

DDGS 

Unfermented*  21.2 8.9 3.7 43.0 10.5 

Fermented 17.9 10.0 2.3 44.4 11.1 

Theoretical value  16.8 9.4 2.2 41.5 10.4 

Increase (+) or decrease (-) -3.3 1.1 -1.3 1.3 0.6 

Theoretical increase (+) or decrease (-) -4.5 0.4 -1.5 -1.5 -0.1 
 
*All the unfermented materials contained 5% (dwb) soybean hulls. 
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CHAPTER 3. ARACHIDONIC ACID (ARA) AND 

EICOSAPENTAENOIC ACID (EPA) PRODUCTION IN SOYBEAN 

PROCESSING CO-PRODUCTS BY PYTHIUM IRREGULARE 
 

A manuscript to be submitted to Journal of Agricultural and Food Chemistry 

Jun Yi Lio1 and Tong Wang1,2 

ABSTRACT 

 Arachidonic acid (ARA) and eicosapentaenoic acid (EPA) were produced by Pythium 

irregulare fungus using soybean cotyledon fiber and soy skim, two co-products from 

aqueous soybean processing, as substrates in different fermentation systems. Parameters such 

as moisture content, substrate glucose addition, incubation time, and vegetable oil 

supplementation were found to be crucial in solid-state fermentation (SSF) of soybean fiber, 

which is to be used as animal feed with enriched long chain polyunsaturated fatty acids 

(PUFA). Soybean fiber with 8% (dwb) glucose supplementation for 7-day SSF produced 1.3 

mg of ARA and 1.6 mg of EPA in one gram of dried substrate. When soy skim was used as 

substrate for submerged fermentation, total ARA yield of 125.7 mg/L and EPA yield of 92.4 

mg/L were achieved with the supplementation of 7% (w/v) soybean oil. This study 

demonstrated that the values of soybean fiber and soy skim could be enhanced through the 

long chain PUFA production by fermentations. 

 

KEYWORDS: Arachidonic acid, eicosapentaenoic acid, polyunsaturated fatty acids, solid-

state fermentation, soybean cotyledon fiber, soy skim, submerged fermentation 
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INTRODUCTION 

Enzyme-assisted aqueous extraction processing (EAEP) of soybeans is a green 

technology that utilizes water and enzyme to recover oil from soybeans. It has been shown to 

be a great alternative to the traditional hexane oil extraction that may create pollution or 

safety problem. However, the feasibility of the soybean EAEP depends on the potentials of 

maximizing the values of two co-products, soybean cotyledon fiber and soy skim.1 Soybean 

cotyledon fiber is a low-valued fraction that contains high amount of fiber. Our previous 

study showed that the fiber composition can be improved by enzyme-producing fungi 

through solid-state fermentation (SSF).2 The fermented soybean fiber with reduced fiber and 

increased protein content can be used as non-ruminant feed. Soy skim is a liquid fraction 

from EAEP that contains partially hydrolyzed protein and has been shown to be an excellent 

nutrient source for corn ethanol fermentation.3 The value of soybean fiber and soy skim 

could be increased considerably if they could be utilized to produce value-added products by 

fermentation. 

Both omega-3 and omega-6 series of long chain polyunsaturated fatty acids (PUFA)  

have shown tremendous potential for use as food additives and in pharmaceutics for relieving 

heart and circulatory disorders and cancers, as well as inflammatory diseases.4 In addition to 

health-promoting effects in humans, PUFA has also shown to be beneficial to animals. 

Improved feed conversion efficiency5, increased body weight6,7, and reduced inflammatory 

response8 were reported when omega-3 PUFA was added in poultry feed. PUFA 

supplementation in poultry feed could also contribute to PUFA enriched meat9,10 and egg 

yolk11-13, adding values to these products. Arachidonic acid (ARA, C20:4, n-6) is an essential 

PUFA that acts as a precursor of important eicosanoids such as prostaglandins, 
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thromboxanes, and leukotrienes.14,15 Animal livers, egg yolks, and fish oil are the sources of 

ARA but the relatively low concentration prompts the industry to seek for other 

alternatives.15,16 Eicosapentaenoic acid (EPA, C20:5, n-3) is also an essential fatty acid that 

has unique biological activities in the prevention and treatment of a number of human 

diseases and disorders.17  Marine fish oil, being a major source of EPA faces several 

challenges, such as the objectionable taste and odors, high cholesterol content, and heavy 

metal pollutants that are yet to be solved. Thus, ARA and EPA produced from fungi would 

be desirable.  

Pythium irregulare is a filamentous fungus which is known to be a good EPA 

producer. It has been employed in submerged fermentation (SmF) using various industrial 

co-products such as sweet whey permeate18, sucrose waste stream and soy meal waste 

stream17, biodiesel-derived crude glycerol19, rendered animal protein20, and corn thin 

stillage21. Although P. irregulare has been shown to produce significant amount of EPA, it 

produces a certain amount of ARA as well.  

We expected that soy skim from EAEP that contains partially hydrolyzed protein may 

provide the needed nitrogen nutrients to support the growth of P. irregulare in SmF and 

stimulate the production of ARA and EPA. Although several researchers reported the 

feasibility of using P. irregulare in SmF, SSF by this fungus has not been intensively studied. 

SSF, which is defined as the fermentation process that microorganisms are grown on solid 

substrate without the presence of free liquid22, has drawn interests in industry because of its 

low waste water production and operation expenses, superior productivity, and the use of 

agro-industrial solid residues as substrates. Thus, SSF of soybean fiber by P. irregulare for 

long chain PUFA formation may be a promising new use for this co-product to further 
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enhance its value as non-ruminant feed. Our research hypothesis was both soybean fiber and 

soy skim may be good substrates in different type of fermentation that will result in ARA an 

EPA enriched co-products. The objectives of this research were: (1) to study the effect of 

moisture content, incubation time, substrate glucose addition, and vegetable oil 

supplementation on long chain PUFA formation in soybean fiber by SSF, and (2) to 

investigate the effect of vegetable oil addition on the SmF performance of soy skim. 

 

MATERIALS AND METHODS 

Microorganisms and Culture Preparation. Pythium irregulare (ATCC 10951) was 

provided by Dr. Zhiyou Wen of Department of Food Science and Human Nutrition, Iowa 

State University. The strain was cultured on agar plates containing 3% glucose, 1% yeast 

extract, and 1% agar. The plates were incubated at 25 ˚C for 6 days until complete 

sporulation. The spores from the plates were dislodged with sterile water containing glass 

beads. The suspensions were used as inoculums and were kept in 4 ˚C until use. 

 

 Substrate Preparation and Chemicals. Soybean cotyledon fiber and soy skim were 

produced in the pilot plant of Center for Crops Utilization Research (CCUR), Iowa State 

University via the two stage counter-current EAEP.23 Soybean cotyledon fiber contained 

82% moisture, 6.4% (dwb) protein, 3.3% (dwb) oil, and 4.3% (dwb) ash. The proximate 

analysis of soy skim was 11% solids, 56.0% (dwb) protein, 9.0% (dwb) oil, and 13.0% (dwb) 

ash.24 Insoluble materials in soy skim were removed according to Yao et al.3 to enable the 

recovery of only the fungal mycelia after SmF. Fully refined soybean oil and flaxseed oil 

were purchased from local grocery stores. All chemicals and medium ingredients were 



www.manaraa.com

70 
 

 

 

 

purchased from Fisher Scientific (Pittsburgh, PA), Sigma Chemicals (St. Louis, MO) or BD 

(Franklin Lakes, NJ). Soybean hulls were provided by MicroSoy® Corporation (Jefferson, 

IA).  

 

Solid-State Fermentation. Inoculum of P. irregulare at 10% (v/v) was transferred to 

a 250 mL Erlenmeyer flask containing 100 mL of liquid medium made of 3% glucose and 

1% yeast extract. The flask was shaken at 150 rpm in a MAXQ Mini 4450 orbital shaker 

(Thermo Scientific, Asheville, NC) at 25 °C for 2 days. The 2-day cultivated medium was 

homogenized with a bamix® M133 hand held homogenizer (Mettlen TG, Switzerland) and 

10% (v/w) of homogenized medium was used to inoculate a 40 g (as-is) of substrate and the 

pH was adjusted to 6.0. SSF was conducted by incubating the substrates at 25 ˚C for different 

length of time as described below. A water reservoir was placed in the incubator to maintain 

the moisture level of the substrate. All the fermented materials were vacuum oven dried 

overnight and ground into powder in a coffee grinder for fatty acid analysis by GC. All 

treatments as discussed below were done in triplicate.  

Effect of Substrate Moisture Content on PUFA Formation. The moisture content of 

freeze-dried soybean fiber substrate was adjusted to various levels (40, 50, 60, and 70%). 

Soybean hulls were added at 5% (dwb) to improve substrate porosity. The substrates were 

supplemented with 4% glucose (dwb). SSF was done at 25 ˚C for 7 days.  

 Effect of Incubation Time with Limited Glucose (4%) and Soybean Oil (15%) 

Supplementation on PUFA Formation. The freeze-dried soybean fiber was hydrated to 

moisture content of 70%. Soybean hulls were added at 5% (dwb). The substrates were 
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supplemented with 15% soybean oil (w/w, dwb) and 4% glucose (dwb) and incubated for 7, 

12, and 20 days.  

  Effect of Glucose Addition on PUFA Formation. Soybean cotyledon fiber (as-is) with 

moisture content of 82% was adjusted to 75% using soybean hulls. Glucose was added to the 

substrates at concentrations of 4, 6, 8, and 10% (dwb) to examine PUFA production. The 

substrates were incubated at 25 ºC for 12 days.  

Effect of Incubation Time with Sufficient Glucose (8%) Supplementation on PUFA 

Formation. The moisture content of soybean cotyledon fiber was adjusted to 75% using 

soybean hulls. The substrates were supplemented with 8% glucose (dwb) and incubated for 

7, 12, 17, 22, and 27 days at 25 ºC to investigate PUFA formation.    

 Effect of Vegetable Oil Supplementation on PUFA Formation. The substrate 

moisture content was adjusted to 75% using soybean hulls. Flaxseed oil and soybean oil were 

added individually at the concentrations of 3, 6, and 10% (w/w, dwb) to examine PUFA 

formation. The substrates were incubated at 25 ºC for 12 days.  

 

 Submerged Fermentation. Inoculum of P. irregulare at 10% (v/v) was transferred 

to 250 mL Erlenmeyer flask containing 100 mL of liquid medium. The pH of the medium 

was adjusted to 6.0 and the flask was shaken at 150 rpm in an orbital shaker at 25 °C for 7 

days. The fungal mycelia were collected at the end of the fermentation by vacuum filtration 

through Whatman No. 1 filter paper and washed with distilled water. The washed mycelia 

were dried in vacuum oven overnight and ground into powder in a coffee grinder for fatty 

acid analysis. 
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Effect of Glucose and Vegetable Oil Supplementation in Soy Skim on PUFA 

Formation. The control medium was made of 3% glucose and 1% yeast extract. Soy skim, 1: 

1 diluted with water was used in all treatments, with glucose added accordingly to the 

selected C/N ratio of 12. Soybean oil and flaxseed oil were added to the soy skim medium 

individually at levels of 3, 5, and 7% (w/v), along with 0.1% (w/v) of Tween 80TM as an 

emulsifier to allow the dispersion of oil in the medium. No additional nitrogen source was 

added in the soy skim medium. All treatments were done in duplicate.     

   

  Fatty Acid Analysis. The fatty acid composition of all fermented materials and 

fungal biomass was analyzed by GC. Briefly, 0.5 gram of ground solid-state fermented 

material was mixed with 6 mL of methanol containing 6% (by volume) sulfuric acid, 

whereas 3% sulfuric acid in methanol was used to react with 0.5 gram of ground fungal 

biomass from SmF. The mixture was heated at 60 ˚C for approximately 20 hours. The 

resulting fatty acid methyl ester (FAME) containing internal standard of 17:0 methyl ester 

was extracted with 2 mL of hexane and washed with 18 mL of distilled water. FAME sample 

of 1 µL was injected into an HP 5890 Series II GC (Hewlett-Packard, PA, USA) equipped 

with a SP-2340 fused silica column (60 m x 0.25 mm and 0.2 µm film thickness) (Supelco, 

Bellefonte, PA, USA). The injector and flame ionization detector were at 230 ˚C and the 

oven was programmed from 100 to 220 ˚C at a rate of 4 ˚C/min. The carrier gas (helium) 

flow rate was 2.9 mL/min and the split ratio was 50:1. 

 

Determination of Dry Fungal Biomass, Protein, Oil, and Ash Contents. The dry 

fungal biomass was collected by filtration with Whatman No. 1 filter paper and determined 
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by weighing after vacuum oven drying overnight. Protein content was determined using the 

Dumas nitrogen combustion method with an ElementarVario MAXCN analyzer (Elementar 

Analysensysteme GmbH, Hanau, Germany) with a conversion factor of 6.25. Oil content was 

determined by acid hydrolysis method (AOAC official method 922.06). Ash content was 

determined by heating the samples at 550 ˚C overnight (AOAC 923.03). The total 

carbohydrate content was calculated by subtracting the protein, oil, and ash contents from 

100%.  

 

  Statistical Analysis. All treatments were repeated as described under each 

experiment. The data were analyzed by ANOVA (Analysis of Variance) using SAS (Version 

9.1, SAS Institute Inc., Cary, NC) to test significance of difference among all treatments at P 

= 5%. 

  

RESULTS AND DISCUSSION 

Solid-State Fermentation  

Effect of Substrate Moisture Content on PUFA Formation. SSF of soybean cotyledon 

fiber with various moisture contents was conducted and the fatty acid composition of the 

fermented materials is presented in Table 1. The total FAME in all the fermented materials 

was lower than that in the unfermented soybean fiber. According to Jacobs et al., oleaginous 

fungi utilized lipids as an energy source for growth under the substrate carbon limitation 

condition. 25 This suggests that the 4% (dwb) glucose added to the soybean fiber might not be 

sufficient to support the growth of P. irregulare and lipids contained in soybean fiber were 

consumed during SSF. The fungus in low moisture substrates was not able to grow and 
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synthesize PUFA. Moisture content was reported as one of the important parameters in SSF 

because low moisture content limits the growth and metabolism of microorganisms.26 Both 

ARA and EPA were found only in the fermented soybean fiber with moisture content of 60% 

and 70%, with the later producing more PUFA. These results correlated to the visual 

observation of growth, where fungal mycelia covered only the high moisture substrates. 

Similar finding was reported that conversion of barley substrate into lipids increased with the 

increase of moisture level from 50% up to 75% in SSF by Pythium ultimum.27 Large standard 

deviation was found in the treatment of 60% moisture content and this was mostly caused by 

the lack of homogeneity in the substrate. Compared to the previous batch of SSF (data not 

shown) without glucose addition, substrates supplemented with 4% glucose improved the 

SSF of soybean fiber with the production of PUFA. Optimization of glucose level in soybean 

fiber in SSF was then performed and the results are shown in the later discussion. 

 

 Effect of Incubation Time with Limited Glucose (4%) and Soybean Oil (15%) 

Supplementation on PUFA Formation. Due to the low lipid (total FAME) content in the 

soybean fiber (3.3%, dwb), the addition of oil might serve as an energy source for fungal 

growth when the simple carbon source in substrate is depleted. Moreover, external vegetable 

oil was shown to act as precursor for the stimulation of PUFA in different SSF studies by 

Mortierella species.25,28,29 High level of soybean oil, i.e. 15% (w/w, dwb), was used to 

supplement the substrate in this experiment. Investigation was done to examine PUFA 

production as affected by incubation time. As indicated in Table 2, the percentages of ARA 

and EPA increased with the increase of SSF incubation time. This trend demonstrates that 

this fungus was able to utilize the additional soybean oil as energy source to support its 
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growth and synthesize more PUFA when the sugar carbon source in substrate was becoming 

limiting during the long incubation period. The negative values of the theoretical new FAME 

of fermented soybean fiber further support this explanation. The theoretical new FAME was 

calculated by subtracting the oil (as FAME) added to the substrate from the total FAME in 

the fermented materials. The higher the negative value, the more lipids the fungus utilized to 

support its growth. Jacobs et al.29 explained that lipid content after fermentation could be 

either decreased as lipids were utilized as energy source for cell growth or increased when 

lipids accumulated in the biomass, depending on the fungal strain and its growth phase. In 

this case, the external oil was consumed by P. irregulare to grow. 

It is also shown in Figure 1 that the higher the ARA and EPA yield, the lower the 

total FAME in biomass were quantified after SSF. This fungus was able to utilize the 

additional lipids in substrate to synthesize PUFA. Based on the insignificant difference 

between the total yields of ARA and EPA in 12 and 20 days, 12 days of SSF was chosen for 

the next experiment.  

 

Effect of Glucose Addition on PUFA Formation. Since substrates with high moisture 

content were more favorable (Table 1), the as-is soybean fiber with moisture content of 82% 

was used in the following experiments to avoid freeze drying step. Based on our previous 

study2 of best fungus growth at moisture content of 75% or 70% as in Table 1, soybean fiber 

was adjusted to a moisture content of 75% using soybean hulls, which acted as inert materials 

to improve the porosity of the substrate and promoted better growth of fungi.2    

Previous results showed that 4% glucose might not be sufficient for P. irregulare to 

grow, therefore, different level of glucose was added to the substrate to investigate PUFA 
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production. Table 3 shows the fatty acid composition of these treatments. The average values 

of ARA and EPA percentages increased with the increase of glucose level from 4% to 8%, 

but the 10% glucose treatment showed a lower PUFA production. However, no significant 

difference was found among the 6% to 10% glucose in the ARA and EPA percentages. The 

intermediate level of 8% glucose addition was chosen for the next experiment. The results 

from this experiment support our earlier finding that higher simple carbon source in substrate 

might be required to support the fungal growth during SSF. 

 

  Effect of Incubation Time with Sufficient Glucose (8%) Supplementation on PUFA 

Formation. The previous experiment showed that with 15% soybean oil and 4% glucose 

supplementation, increase of SSF incubation time favored PUFA production, and 12-day was 

an appropriate duration for incubation. In this study, the effect of incubation time on PUFA 

production was examined when high amount of glucose (8%, dwb) was supplemented to the 

substrate without the addition of oil. 

The increasing trend of ARA and EPA percentages found in the previous SSF (Table 

2) was not observed in this experiment, as shown in Table 4. P. irregulare was not able to 

further produce PUFA when the simple carbon source was quickly depleted without external 

oil supply. As shown in Figure 2, there were significant decreases in total FAME and ARA 

and EPA yields in the fermented soybean fiber incubated longer than 7 days. This trend 

demonstrates that significant amount of lipids in substrate was utilized to prolong the fungal 

growth. Cantrell and Walker also reported that the reduction in lipid and biomass during a 

long fermentation period could be caused by the potential death of cells after no available 

carbon source was provided.30 
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The percentages of ARA and EPA in the fermented materials that were incubated for 

7 and 12 days in this experiment (Table 4) were much higher compared to the ARA and EPA 

values in Table 2. This indicates that when P. irregulare has to synthesize lipids de novo 

from the simple glucose carbon source, it naturally produces more ARA and EPA. When 

significant amount of external vegetable oil was used as in previous experiment, the 

unutilized oil in the substrate may dilute the ARA and EPA percentages in the final products. 

Therefore, the ARA and EPA yield (mg/g) in the final products may be a better indicator 

than their percentages when evaluating the effect of vegetable oil supplementation on PUFA 

formation. Even without oil supplementation, this fungus was able to produce ARA in a yield 

of 1.3 mg/g and EPA in a yield of 1.6 mg/g in 7-day fermented soybean fiber (Figure 2). 

These values were not substantially different from the ARA and EPA yield of 1.0 mg/g and 

1.7 mg/g in the oil enriched substrate with the same SSF period as shown in Figure 1. 

Addition of oil might be beneficial only when the substrates are carbon limited or the 

samples are incubated for a long period.  

 

Effect of Vegetable Oil Supplementation on PUFA Formation. In order to further 

investigate the effect of oil and glucose supplementation on PUFA formation, different levels 

of flaxseed oil and soybean oil were supplemented to the glucose sufficient (8%, dwb) 

substrate. The SSF was conducted for 12 days based on the previous result with the oil 

supplementation showing 12 days was a proper duration (Table 2). Flaxseed oil contains high 

level of α-linolenic acid (C18:3) whereas soybean oil is rich in linoleic acid (C18:2). These 

fatty acids can act as precursors for PUFA production in SSF. 



www.manaraa.com

78 
 

 

 

 

As shown in Table 5, the percentages of ARA and EPA in treatments with vegetable 

oil addition were lower compared to the control group with only glucose added. Flaxseed oil 

and soybean oil did not seem to stimulate the elongation and desaturation to produce more 

ARA and EPA. However, this could also be due to the dilution effect of the true vegetable oil 

that was not uptaken by the fungus. When the total FAME was examined, there were some 

increased formations with the increase of vegetable oil addition. This trend showed that the 

supplemented oil was not consumed by this fungus or simply being stored in the fungal 

mycelia without producing more PUFA. The earlier discussion (Table 2) showed that when 

the 4% glucose was supplemented to substrate, additional soybean oil was utilized and that 

led to the negative values of the theoretical new FAME. The positive values of the theoretical 

new FAME shown in this experiment indicate that the fungus may not have consumed 

significant amount of external oil when the simple carbon (sugar) was sufficient. However, 

the reducing trend in theoretical values indicates that the fungus may have still consumed 

more oils in the substrates that supplemented with higher level of oil. On the other hand, this 

reduction trend could also be explained by the high level of vegetable oil inhibited the fungal 

growth and decreased the ability to synthesize new oil.  

ARA and EPA percentages in the fermented soybean fiber supplemented with 6% 

flaxseed oil were higher compared to the other two levels of supplementation but it showed 

no significant difference compared to control. On the other hand, no significant difference 

was found among the fermented substrates with 6% and 10% soybean oil addition. No ARA 

or EPA was found in the treatment with 3% soybean oil. The main drawback of SSF, the lack 

of homogeneity in substrate, may have affected the fungal growth and resulted in the large 

standard deviation in some treatments. Moreover, the added vegetable oil might not have 
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been well dispersed in the solid substrates and caused the inconsistency in the SSF. The 

higher ARA and EPA yield in the substrate treated with 6% flaxseed oil, 6% and 10% 

soybean oil compared to the control were due to the external oil addition and oil synthesis. 

Our results were different from the Pythium ultimum SSF study that showed increases in 

percentages as well as total yield of ARA and EPA in a nutrient enriched barley substrate 

with the addition of flaxseed oil.27 Since only glucose was added to the soybean fiber in our 

study, other nutrients in soybean fiber might not be sufficient or in a form that was not 

readily available to support the fungal growth.  

In general, we found that addition of vegetable oil did not stimulate the elongation 

and desaturation significantly for long chain PUFA formation by SSF when the substrate was 

supplemented with sufficient simple carbon source. Based on the overall results, soybean 

fiber with 8% (dwb) glucose supplementation for 7-day SSF produced 1.3 mg of ARA and 

1.6 mg of EPA in each gram of dried substrate. Such fermented product was analyzed for 

proximate composition. As shown in Table 6, only moderate changes were found in the 

fermented substrate after SSF by P. irregulare. Figure 3 shows the vigorous fungal growth 

for this treatment.  

Our previous study showed that fiber content in soybean fiber could be decreased 

significantly by a mixed culture SSF of lignocellulose-degrading fungi.31 Results from this 

study further demonstrate that soybean fiber could be used as a substrate for P. irregulare 

SSF for long chain PUFA formation if a simple sugar is present in a sufficient quantity. 

Therefore, there is a great potential to combine these two types of SSF to produce value-

added fermented product as animal feed.   
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Submerged Fermentation 

Effect of Glucose and Vegetable Oil Supplementation in Soy Skim on PUFA 

Formation. Although our results showed that soybean cotyledon fiber could be used as a 

substrate for P. irregulare SSF, the fungal biomass and substrate could not be separated from 

each other after SSF to allow the analysis of oil in fungus cells. To further investigate the oil 

quantity and composition of fungal biomass, SmF by using soy skim, the other co-product 

from soybean EAEP, was used as the nitrogen-rich liquid medium. According to Yao et al.3, 

replacing water with soy skim in corn ethanol fermentation resulted in an increased ethanol 

production rate. Soy skim with the insoluble materials removed contained 8.9% solids, of 

which 56.5% (dwb) was protein and a small amount of soluble sugars, mainly sucrose and 

stachyose.3 Yao et al.3 also indicated that 91% of peptides in soy skim were smaller than 17 

kDa compared to 98% in peptone, with 70% of peptides in soy skim had molecular weight 

(MW) < 1.35 kDa. Since soy skim fractions were shown to contain adequate nitrogenous 

nutrients for yeast metabolism, no additional nitrogen was added to the soy skim medium 

prior to P. irregulare SmF.  

In addition to nitrogen source, carbon source was reported as essential in the growth 

of P. irregulare.
19 Glucose was added to the soy skim medium to adjust the C/N ratio to 12 

as in the control medium. Since SSF of soybean cotyledon fiber by P. irregulare showed that 

addition of vegetable oil was not beneficial in the presence of sufficient glucose supply, the 

soy skim media were supplemented with only one third of the simple carbon (sugar) as for 

the control for all the treatments with vegetable oil addition. This experiment allows a further 

investigation of the effect of vegetable oil on the long chain PUFA production in SmF 
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without the interference of the unused oil. The media information of all the treatments is 

included in Table 7.  

As shown in Figure 4, no mycelia were present in the soy skim medium without oil 

addition. Even though the C/N ratio of the soy skim medium was identical to the control 

medium, the nutrients may not be utilized by P. irregulare or some inhibitory factors might 

be present in the soy skim fraction. The free amino acid and small peptides in soy skim that 

can be used by yeast may not be utilized by P. irregulare. Although the MW range of the 

small peptides in soy skim was similar to that of peptone3, the MW range of the peptides in 

peptone and yeast extract are different. Based on the BD Bionutrients TM Technical Manual 

(Franklin Lakes, NJ)32, approximately 62% of peptides present in yeast extract are in the MW 

range < 250 Da as compared to 15% in peptone. Most of the peptides (~67%) in peptone are 

in the MW range of 500-5000 Da.  Bajpai and Bajpai reported that yeast extract was the best 

nitrogen source for ARA production by Mortierella fungi.33 
 Liang et al. reported that 

rendered animals protein tend to be too large to be transported across microorganism cell 

membrane into cytoplasm and found that smaller peptides after protein hydrolysis favored 

the growth of P. irregulare.20 Our findings also illustrated that P. irregulare might have only 

utilized the small peptides in yeast extract in the control medium and not the larger peptides 

in soy skim medium. The filtrates collected after harvesting the mycelia were characterized 

for nitrogen (N) content and the data is presented in Table 8. N content in control media 

decreased substantially after fermentation, indicating the fungus utilized it to grow. However, 

such decrease was not found in the soy skim media. Thus, N composition profile might be 

the limiting factor for the growth of P. irregulare. This may also be the reason for poor 

formation of ARA and EPA in SSF.  
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To determine if inhibitory factors or N composition profile was the main reason of the 

poor fungal growth in soy skim medium, an experiment was conducted by supplementing the 

soy skim medium with equal amount of yeast extract and glucose as for control medium. The 

fungal growth in the soy skim after 7 days of SmF was poor and the mycelia harvested from 

such medium was only 6.7% of the fungal biomass collected from control medium. This 

result confirmed the presence of inhibitory factors in soy skim and identification of the 

inhibitors are needed. 

 Even though some inhibitory factors may have prevented the growth of P. irregulare 

in soy skim fraction, the addition of vegetable oil was shown to overcome such factors. As 

shown in Figure 4, fungal biomass from the oil enriched media increased compared to that of 

the control. This fungus was able to utilize the external oil to grow and accumulate it in the 

mycelia by SmF. This observation agreed with our earlier findings in SSF that when carbon 

source was depleted, this fungus was able to utilize external oil as energy to grow. These 

results were also similar to the studies that showed increases in fungal biomass in the media 

with the addition of soybean oil and flaxseed oil due to the storage of excess oil in the fungal 

cells after P. irregulare SmF.17,19 The fungal biomass from soybean oil enriched media 

increased with the increase of soybean oil concentration, with 7% (w/v) soybean oil resulted 

in biomass of 37 g/L after 7 days of SmF. Such trend was not observed in the media with the 

addition of flaxseed oil. Fungal biomass collected from the medium with 3% (w/v) flaxseed 

oil supplementation was significantly higher than the 5% (w/v) flaxseed oil but not 

significantly different from the medium with 7% (w/v) flaxseed oil addition.  

Fatty acid composition of the fungal biomass harvested from different treatments 

after 7 days of SmF is presented in Table 7. Total FAME in all vegetable oil enriched media 
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were higher than in control, indicating that the fungus was able to accumulate part of the 

added oil into the mycelia. Nonetheless, the fatty acids were not extensively elongated or 

desaturated into long chain PUFA and caused the low percentages of ARA and EPA. The 

unmodified oil in the mycelia may dilute the ARA and EPA percentages. High levels of 

linoleic acid (C18:2) in soybean oil treatment and α-linolenic acid (C18:3) in flaxseed oil 

treatment were the results of these oil accumulation in mycelia. Fungus might be able to 

grow better and synthesize more ARA and EPA if the inhibitors could be identified and 

removed from the medium. It also seems that the addition of vegetable oil partially relieved 

the inhibitory effect of the soy skim, since soy skim supplemented with yeast extract but with 

no oil had very poor fungal growth.  

It should be noted in Table 7 that ARA contents were higher in the soybean oil 

enriched media and EPA contents were higher in the media with addition of flaxseed oil. 

This explains that P. irregulare utilized linoleic acid and α-linolenic acid, respectively, as 

external precursors and synthesized ARA through the n-6 pathway and EPA through the n-3 

pathway in PUFA biosynthesis.  

Overall, soybean oil addition led to higher ARA and EPA yield compared to flaxseed 

oil as shown in Figure 4. Supplementation of 7% (w/v) soybean oil in the soy skim medium 

resulted in a total ARA yield of 125.7 mg/L and a EPA yield of 92.4 mg/L, which was no 

significantly different compared to the yield from the control medium. This treatment yielded 

a fungal biomass containing 0.35% ARA and 0.25% EPA. Fungal growth in such treatment 

is illustrated in Figure 3. These findings suggest soy skim from soybean EAEP could be 

utilized in fungal fermentation to synthesize ARA and EPA.  
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In general, P. irregulare was able to utilize the external oil to prolong the 

fermentation and synthesize long chain PUFA when simple carbon source in soybean fiber is 

limited in SSF. However, benefits from oil supplementation in stimulating PUFA formation 

were not apparent when the substrate was supplied with sufficient sugar carbon. On the other 

hand, this fungus was able to grow in the carbon-deficient soy skim with the oil addition by 

SmF. Oil seemed to make the fungus tolerable to the inhibitory factors that may be present in 

the soy skim. Further identification of inhibitors in soy skim is needed to develop a most 

suitable soy skim medium to generate ARA and EPA and at the same time make the full 

utilization of this nutrient-rich by-product from soybean processing. As a conclusion, both 

soybean cotyledon fiber and soy skim, co-products from aqueous soybean processing, have 

shown a promise in producing ARA and EPA by P. irregulare through different fermentation 

systems. 
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Table 1. Effect of substrate moisture content on fatty acid composition of soybean fiber after 7 days of SSF. 
 

Fatty acid 
Unfermented 

material b 
Moisture content (%) 

40 50 60 70 

% of 
Total 

FAME 

14:0 0.1 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.4 2.2 ± 1.4 

16:0 15.8 15.9 ± 0.3 16.5 ± 0.9 17.5 ± 1.0 18.7 ± 3.5 

16:1 0.2 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 1.0 ± 0.6 

18:0 7.7 7.2 ± 0.3 6.8 ± 0.5 8.3 ± 0.1 6.8 ± 0.5 

18:1 28.4 27.5 ± 0.3 28.0 ± 0.4 29.7 ± 0.2 27.8 ± 0.2 

18:2 41.7 42.2 ± 0.6 40.8 ± 1.6 36.9 ± 1.7 32.2 ± 4.9 

18:3 4.2 4.8 ± 0.0 4.5 ± 0.2 4.0 ± 0.2 3.9 ± 0.4 

20:4 ND c ND ND 0.1 ± 0.2 1.5 ± 0.5 

20:5 ND ND ND 0.2 ± 0.3 2.0 ± 0.5 

Others 1.9 2.3 ± 0.6 3.5 ± 0.8 2.8 ± 0.7 3.9 ± 1.7 
Total FAMEa  

(mg/g) 
32.8 26.5 ± 3.8 23.7 ± 0.8 25.4 ± 0.6 27.9 ± 1.5 

ARA yield (mg/g) ND ND ND 0.0 ± 0.1 0.4 ± 0.1 

EPA yield (mg/g)  ND ND ND 0.0 ± 0.1 0.5 ± 0.1 
 
N=3. Data are presented as Mean ± SD. 
a Total fatty acid methyl ester. 
b Unfermented material composition (% dwb): Soybean fiber, 95; soybean hulls, 5. 
c ND: Not detectable. 
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Table 2. Effect of SSF incubation time on fatty acid composition of soybean fiber with 4% glucose and 15% soybean oil 
supplementation. 
  
  

Fatty acid 
Incubation time (day) 

  7 12 20 

% of Total 
FAME 

14:0 0.7 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 
16:0 12.8 ± 0.2 11.3 ± 0.9 10.3 ± 0.5 
16:1 0.4 ± 0.0 0.4 ± 0.1 0.3 ± 0.0 
18:0 5.9 ± 0.2 5.5 ± 0.4 4.6 ± 0.3 
18:1 28.6 ± 0.4 27.1 ± 0.6 25.7 ± 1.1 
18:2 41.4 ± 1.6 42.6 ± 1.7 42.8 ± 1.2 
18:3γ 0.3 ± 0.1 0.3 ± 0.0 0.2 ± 0.0 
18:3 4.6 ± 0.4 4.2 ± 0.1 4.0 ± 0.1 
20:4 0.9 ± 0.3 a 1.4 ± 0.0 a 2.6 ± 0.3 b 
20:5 1.5 ± 0.5 a 2.8 ± 0.2 b 4.6 ± 0.6 c 
Others 2.9 ± 0.3 3.4 ± 0.2 3.9 ± 0.6 

Total FAME a (mg/g) 113.7 ± 2.5 a 107.3 ± 16.4 a 66.4 ± 4.9 b 

Theoretical new FAME b (mg/g) -1.1 ± 2.5 -7.5 ± 16.4 -48.4 ± 4.9 

 
N=3. Data are presented as Mean ± SD. The values followed by the same letter in the same row are not significantly different at 
P=5%. 
a Total fatty acid methyl ester. 
b Total fatty acid methyl ester with the added oil (as FAME) subtracted. 
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Table 3. Effect of glucose addition on fatty acid composition of soybean fiber after 12 days of SSF. 
 
  

Fatty acid 
Unfermented 

material b 
Glucose addition (%, dwb) 

  4 6 8 10 

% of 
Total 

FAME 

14:0 0.1 0.8 ± 0.1 1.1 ± 0.4 1.4 ± 0.2 1.3 ± 0.2 
16:0 17.0 13.2 ± 0.6 13.8 ± 1.4 14.0 ± 0.4 13.7 ± 1.1 
16:1 0.2 0.5 ± 0.1 0.8 ± 0.3 1.0 ± 0.1 0.9 ± 0.2 
18:0 9.3 5.5 ± 0.3 5.2 ± 0.2 4.9 ± 0.3 5.0 ± 0.1 
18:1 25.4 21.1 ± 0.6 21.5 ± 0.3 21.3 ± 0.7 21.3 ± 0.1 
18:2 39.4 42.8 ± 1.4 41.4 ± 4.5 38.6 ± 1.6 41.2 ± 3.3 
18:3γ ND 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 
18:3 6.0 6.9 ± 0.5 6.4 ± 0.8 5.9 ± 0.4 6.5 ± 0.6 
20:4 ND 2.6 ± 0.4 a 3.1 ± 1.1 a 3.9 ± 0.6 a 3.2 ± 0.9 a 
20:5 ND 2.5 ± 0.4 b 2.8 ± 0.9 ab 3.8 ± 0.5 a 3.0 ± 0.7 ab 
Others 2.5 4.0 ± 0.6 3.9 ± 0.9 4.9 ± 1.3 3.8 ± 0.5 

Total FAME a 
(mg/g) 

27.7 27.3 ± 3.1 28.9 ± 10.3 23.3 ± 3.2 32.5 ± 12.2 

ARA yield (mg/g) ND c 0.7 ± 0.0 d 0.8 ± 0.0 c 0.9 ± 0.0 b 1.0 ± 0.1 a 
EPA yield (mg/g) ND  0.7 ± 0.0 c 0.8 ± 0.1 bc 0.9 ± 0.1 ab 0.9 ± 0.1 a 

 
N=3. Data are presented as Mean ± SD. The values followed by the same letter in the same row are not significantly different at 
P=5%. 
a Total fatty acid methyl ester. 
b Unfermented material composition (% dwb): Soybean fiber, 65.8; soybean hulls, 34.2. 
c ND: Not detectable.  
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Table 4. Effect of SSF incubation time on fatty acid composition of soybean fiber with 8% glucose supplementation. 
 
  

Fatty acid 
Incubation time (day) 

  7 12 17 22 27 

% of 
Total 

FAME 

14:0 3.0 ± 0.4 1.4 ± 0.2 1.4 ± 0.1 1.7 ± 0.2 1.4 ± 0.3 
16:0 16.9 ± 1.5 14.5 ± 1.0 14.5 ± 0.2 14.0 ± 0.3 14.3 ± 0.7 
16:1 2.2 ± 0.4 1.2 ± 0.1 0.8 ± 0.5 1.4 ± 0.2 1.1 ± 0.3 
18:0 4.9 ± 0.4 5.0 ± 0.2 5.2 ± 0.1 4.9 ± 0.1 5.1 ± 0.2 
18:1  21.6 ± 1.0 20.8 ± 0.2 21.5 ± 0.1 21.5 ± 0.3 21.7 ± 0.2 
18:2 35.5 ± 2.6 38.3 ± 3.1 39.4 ± 0.9 38.8 ± 1.4 40.1 ± 2.2 
18:3γ 0.3 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.1 
18:3 5.9 ± 0.5 6.0 ± 0.8 6.3 ± 0.4 6.3 ± 0.6 6.6 ± 0.3 
20:4 2.7 ± 0.3 b 4.4 ± 0.9 a 3.6 ± 0.3 ab 3.5 ± 0.7 ab 2.9 ± 0.4 b 
20:5 3.3 ± 0.4 ab 3.8 ± 0.8 a 3.1 ± 0.2 ab 3.3 ± 0.8 ab 2.4 ± 0.4 b 
Others 3.7 ± 0.6 4.3 ± 0.8 4.2 ± 0.4 4.3 ± 0.5 4.4 ± 0.8 

Total FAME a 
(mg/g) 

47.2 ± 4.3 a 24.1 ± 5.2 b 23.1 ± 2.9 b 24.8 ± 3.1 b 23.5 ± 2.9 b 

 
N=3. Data are presented as Mean ± SD. The values followed by the same letter in the same row are not significantly different at 
P=5%. 
a Total fatty acid methyl ester. 

 

 

 

 



www.manaraa.com

 
 

 

 

 

92
 

Table 5. Effect of vegetable oil supplementation on fatty acid composition of soybean fiber after 12 days of SSF. 
 
  Fatty 

acid  
Treatment 

  Control c 3% FSO d 6% FSO 10% FSO 3% SBO e 6% SBO 10% SBO 

% of 
Total 

FAME 

14:0 1.3 ± 0.1 0.5 ± 0.6 0.9 ± 0.2 0.2 ± 0.3 0.1 ± 0.0 0.5 ± 0.1 0.6 ± 0.1 

16:0 12.6 ± 0.2 12.7 ± 0.2 10.5 ± 0.3 9.5 ± 0.3 13.3 ± 0.1 11.6 ± 0.2 11.4 ± 0.3 

16:1 1.1 ± 0.1 0.4 ± 0.5 0.7 ± 0.1 0.2 ± 0.2 0.1 ± 0.0 0.4 ± 0.1 0.4 ± 0.1 

18:0 4.7 ± 0.1 5.8 ± 0.8 4.4 ± 0.1 5.0 ± 0.3 6.2 ± 0.0 5.1 ± 0.1 5.1 ± 0.1 

18:1 20.6 ± 0.2 24.5 ± 1.9 21.9 ± 0.3 23.6 ± 0.7 25.7 ± 0.1 24.0 ± 0.5 24.4 ± 0.5 

18:2 42.2 ± 0.8 34.7 ± 1.3 31.0 ± 1.7 27.8 ± 1.2 46.2 ± 0.2 46.1 ± 0.9 45.5 ± 0.7 

18:3γ 0.2 ± 0.0 0.1 ± 0.1 0.2 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.1 

18:3 6.9 ± 0.1 16.7 ± 1.5 21.8 ± 0.7 30.5 ± 3.1 6.3 ± 0.1 6.1 ± 0.2 5.6 ± 0.2 

20:4 3.5 ± 0.4 a 1.0 ± 1.8 cd 2.7 ± 0.3 ab 0.6 ± 1.0 cd 0.0 ± 0.0 d 1.8 ± 0.3 bc 1.9 ± 0.3 bc 

20:5 3.2 ± 0.3 a 1.0 ± 1.8 cd 2.8 ± 0.4 ab 0.6 ± 1.0 cd 0.0 ± 0.0 d 1.6 ± 0.4 bc 1.9 ± 0.4 abc 

Others 3.8 ± 0.6 2.4 ± 1.0 3.0 ± 0.4 2.0 ± 0.7 2.1 ± 0.2 2.7 ± 0.3 3.1 ± 1.2 

Total FAME a 
(mg/g) 

33.1 ± 4.2 46.8 ± 5.1 61.3 ± 5.0 83.9 ± 8.2 55.4 ± 2.2 78.2 ± 9.4 92.3 ± 3.9 

Theoretical new 
FAME b (mg/g) 

33.1 ± 4.2 23.2 ± 5.1 14.1 ± 5.0 5.2 ± 8.2 32.4 ± 2.2 32.3 ± 9.4 15.8 ± 3.9 

ARA yield (mg/g) 1.1 ± 0.0 ab 0.5 ± 0.9 bc 1.6 ± 0.1 a 0.4 ± 0.7 bc 0.0 ± 0.0 c 1.4 ± 0.2 a 1.7 ± 0.2 a 

EPA yield (mg/g) 1.1 ± 0.1 bc 0.5 ± 0.9 bc 1.7 ± 0.2 a 0.4 ± 0.8 bc 0.0 ± 0.0 c 1.2 ± 0.2 a 1.7 ± 0.3 a 

 
N=3. Data are presented as Mean ± SD. The values followed by the same letter in the same row are not significantly different at 
P=5%. 

a Total fatty acid methyl ester. 
b Total fatty acid methyl ester with the added oil (as FAME) subtracted. 
c Fermented materials with 8% glucose added. 
d FSO: Flaxseed oil. 
e SBO: Soybean oil. 
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Table 6. Composition of soybean cotyledon fiber before and after P. irregulare SSF with 8% glucose addition for 7 days. 
   

  Composition (%, dwb) 

  Oil Protein Carbohydrate Ash 

Unfermented 4.9 ± 0.1 12.2 ± 0.3 78.7 ± 0.1 4.3 ± 0.3 
Fermented  5.2 ± 0.2 10.4 ± 0.3 79.2 ± 0.7 5.2 ± 0.5 
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Table 7. Effect of glucose and vegetable oil supplementation in soy skim on fatty acid composition of fungal biomass after 7 days 
of SmF. 
 
    Unfermented 

skim 

Treatment  

    Control  
Soy 

skim a 
3% 

SBO b  
5% SBO 7% SBO 3% FSO c 5% FSO 7% FSO 

Glucose (%, w/v) 3 12.5 3.5 3.5 3.5 3.5 3.5 3.5 

Yeast extract (%, w/v) 1 - - - - - - - 

Soybean oil (%, w/v) - - 3 5 7 - - - 

Flaxseed oil (%, w/v) - - - - - 3 5 7 

C/N ratio  12 12 9.1 12.9 16.7 9.1 12.9 16.7 

Fatty acid composition 

% of 
Total 

FAME 

14:0 1.9 8.3 ± 0.3 ND 0.7 0.6 ± 0.0 0.7 ± 0.2 0.4 ± 0.1 0.6 ± 0.2 0.6 ± 0.1 
16:0 16.1 20.1 ± 0.5 ND 10.9   10.9 ± 0.1 11.0 ± 0.1 8.0 ± 0.0 7.8 ± 0.6 7.6 ± 0.6 
16:1 ND  7.1 ± 0.0 ND 0.4 0.3 ± 0.0 0.4 ± 0.1 0.2 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 
18:0 6.7 3.3 ± 0.3 ND 4.2 4.3 ± 0.2 4.3 ± 0.0 4.8 ± 0.2 4.2 ± 0.1 4.1 ± 0.2 
18:1 18.3 17.2 ± 1.2 ND 23.1 23.2 ± 0.3 23.0 ± 0.0 25.6 ± 0.8 22.3 ± 0.0 21.3 ± 0.1 
18:2 48.8 16.4 ± 0.7 ND 50.1 50.6 ± 0.5 50.9 ± 0.7 17.9 ± 0.0 18.3 ± 0.7 17.6 ± 0.2 
18:3γ ND  1.1 ± 0.0 ND 0.2 0.2 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0 
18:3 6.4 2.7 ± 0.3 ND 6.7 6.7 ± 0.0 6.7 ± 0.0 40.2 ± 1.0 42.8 ± 0.2 44.9 ± 0.2 
20:4 ND  9.5 ± 0.1 a ND 0.9 b    0.7 ± 0.0 bc 0.7 ± 0.2 bc 0.4 ± 0.1 d   0.6 ± 0.1 cd  0.6 ± 0.1 bcd 
20:5  ND  6.1 ± 0.3 a ND 0.9 b  0.6 ± 0.0 b 0.5 ± 0.1 b 0.5 ± 0.1 b  0.9 ± 0.1 b 0.8 ±0.3 b 
Others  1.9 8.0 ± 0.1 ND 2.0 1.8 ± 0.2 1.7 ± 0.1 1.9 ± 0.3 2.1 ± 0.3 1.9 ± 0.3 

Total FAME d 
(mg/g)  

2.2 175.3 ± 20.9 ND 433.1 479.3 ± 6.3 510.4 ± 5.0 341.6 ± 6.4 352.6 ± 31.9 374.4 ± 12.5 

ARA content 
(mg/g) 

ND e   16.7 ± 2.2 a ND 3.9b 3.4 ± 0.2 b 3.5 ± 0.9 b 1.3 ± 0.3 b 2.0 ± 0.0 b 2.3 ± 0.4 b 

EPA content 
(mg/g) 

ND   10.7 ± 0.8 a ND 3.9b 2.9 ± 0.1 bc 2.5 ± 0.5 bc 1.6 ± 0.3 c 3.0 ± 0.5 bc 3.1 ± 1.1 bc 
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N=2. Data are presented as Mean ± SD. The values followed by the same letter in the same row are not significantly different at 
P=5%. Only one replicate was presented in the treatment of 3% SBO.  
a Soy skim was diluted with water at 1:1 ratio.  
b SBO: Soybean oil. 
c FSO: Flaxseed oil. 
d Total fatty acid methyl ester. 
e ND: Not detectable. 
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Table 8. Comparison of media N content before and after SmF. 
 

   Treatment    N content a (g/L) 

Unfermented media 
Control b 1.1 ± 0.0 
Soy skim c 3.8 ± 0.0 

Fermented media 

Control 0.5 ± 0.4 
Soy skim  3.3 ± 0.2 
3% SBO d (w/v) + soy skim 3.3 ± 0.3 
5% SBO (w/v) + soy skim 2.8 ± 0.1 
7% SBO (w/v) + soy skim 2.7 ± 0.0 
3% FSO e (w/v) + soy skim 3.0 ± 0.0 
5% FSO (w/v) + soy skim 3.0 ± 0.1 
7% FSO (w/v) + soy skim 2.8 ± 0.1 

 

a N content presented was determined by Dumas nitrogen combustion method with an ElementarVario MAXCN analyzer. 
b Unfermented control medium contained 3% glucose with 1% yeast extract. 
c Soy skim was diluted with water at 1:1 ratio.   
d SBO: Soybean oil. 
e FSO: Flaxseed oil. 
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Figure 1. Effect of SSF incubation time on total FAME and yield of ARA and EPA of 
soybean fiber with 4% glucose and 15 % soybean oil supplementation. N=3. Data with the 
same letter within each series are not significantly different at P=5%. 
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Figure 2. Effect of SSF incubation time on total FAME and yield of ARA and EPA of 
soybean fiber with 8% glucose supplementation. N=3. Data with the same letter within each 
series are not significantly different at P=5%. 
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(a) 

 

(b) 

 

Figure 3. (a) Soybean fiber supplemented with 8% (dwb) glucose before (left) and after 
(right) 7 days of SSF. (b) Soy skim medium with 7% (w/v) soybean oil added before (left) 
and after (right) 7 days of SmF. 

 

 

 

 

 



www.manaraa.com

100 

 

 

 

 

 

Figure 4. Effect of glucose and vegetable oil supplementation in soy skim on fungal biomass 
and yield of ARA and EPA after 7 days of SmF. N=2. Data with the same letter within each 
series are not significantly different at P=5%. Only one replicate was presented in the 
treatment of 3% SBO. 
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CHAPTER 4. GENERAL CONCLUSIONS 

 

Agro-industrial residues have been used in both solid-state fermentation (SSF) and 

submerged fermentation (SmF) to produce value-added products. Soybean cotyledon fiber is 

the fiber-rich fraction from enzyme-assisted aqueous extraction processing (EAEP) of 

soybeans and may contain all nutrients for SSF. Distiller’s dried grains with soluble (DDGS) 

produced from corn ethanol fermentation contains concentrated amounts of unfermentable 

materials such as protein, oil, minerals, and vitamins, and it could be a good SSF substrate as 

well. The high fiber content in these co-products limits their use as non-ruminant feed. SSF 

by using mixed fungal culture may convert these materials to better feeds. We hypothesized 

that the nutrients in soybean cotyledon fiber and DDGS can support the growth of different 

fungi in SSF and the microbial enzymes secreted can potentially break down the fiber to 

improve their digestibility as non-ruminant feed.  

In our first study, we found synergistic effect among the three fungi, Aspergillus 

oryzae, Trichoderma reesei, and Phanerochaete chrysosporium, when they were inoculated 

in the soybean cotyledon fiber and DDGS in SSF. The inoculation sequence of different 

fungi was identified as an important factor to allow the best interaction among the fungi to 

achive vigorous growth and high enzyme production. Combination of fungi with the 

inoculation of T. reesei and P. chrysosporium for 36 hours, followed by A. oryzae for 

additional 108 hours was shown to be the best for both soybean cotyledon fiber and DDGS 

SSF. Large scale SSF with the same inoculation sequence of fungi was conducted and the 

fermented materials had 3.5-15.1% lower fiber and 1.3-4.2% higher protein content after 

SSF, demonstrating the potential for non-ruminant feed improvement. 
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To further enhance the nutritional value of soybean cotyledon fiber and soy skim 

fractions, Pythium irregulare was employed in different fermentation systems for 

arachidonic acid (ARA) and eicosapentaenoic acid (EPA) production in the second study. 

When soybean fiber was used as the substrate in SSF by P. irregulare, parameters such as 

moisture content, substrate glucose addition, incubation time, and vegetable oil 

supplementation were found to affect the production of ARA and EPA. High moisture 

content and glucose supplementation in soybean cotyledon fiber favored the long chain 

polyunsaturated fatty acid (PUFA) production. The level of glucose in soybean fiber could 

affect the utilization of external oils by P. irregulare in producing PUFA in SSF. Soybean 

fiber with 8% (dwb) of glucose supplementation for 7-day SSF produced 1.3 mg of ARA and 

1.6 mg of EPA in every gram of dried substrate. No substantial difference was found in other 

composition of fermented soybean fiber, demonstrating its potential use as enriched animal 

feed. When soy skim was used in the SmF, P. irregulare was able to grow in the carbon-

deficient medium with the external oil addition. The data also suggests that oil overcame the 

inhibitory factors that may present in the soy skim. Total ARA yield of 125.7 mg/L and EPA 

yield of 92.4 mg/L were achieved with the supplementation of 7% (w/v) soybean oil in soy 

skim medium. This treatment also yielded a fungal biomass containing 0.35% ARA and 

0.25% EPA. Overall, both fiber and skim co-products from aqueous soybean processing have 

shown promising results in producing ARA and EPA by P. irregulare through different 

fermentation systems. Further identification of inhibitors in the soy skim is needed to fully 

utilize this low-value co-product.  

Although both soybean EAEP co-products were shown to be suitable substrate and 

medium in fermentations, the PUFA yield was unexpectedly low. The concentration of the 
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PUFA-rich oil used in different feeding studies was at least 1% of the total diet. The best 

treatments from this research led to the fermented soybean fiber containing 0.13% ARA and 

0.16% EPA by SSF, and fungal biomass containing 0.35% ARA and 0.25% EPA by SmF. 

Therefore, optimization of strains and nutrient requirements of the fungus is needed to 

achieve meaningful PUFA enrichment in these soy co-products.   
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